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FOREWORD

This interim report presents some definitive results from

our analysis of the VETA-I X-ray testing data. It also provides a

description of the hardware and software used in the conduct of

the VETA-I X-ray test program performed at the MSFC X-ray
Calibration Facility (XRCF). These test results also serve to

supply data and information to include in the TRW final report

required by DPD 692, DR XC04. To provide an authoritative
compendium of results, we have taken nine papers as published in

the SPIE Symposium, "Grazing Incidence X-ray/EUV Optics for

Astronomy and Projection Lithography," vol. 1742, and have

reproduced them as the content of this report.

These papers are as follows:

P.Zhao et al., "Intensity Distribution of the X-Ray Source

for the AXAF VETA-I Mirror Test." This paper describes a

novel pinhole camera arrangement for measuring the size and

detailed intensity distribution of the X-ray generator used

for the VETA-I testing.

W.A.Podgorski et al., "VETA-I X-Ray Detection System." This

paper provides an overview of all the hardware provided and

used by SAO to carry out the Veta-I testing.

R.J.V.Brissenden et al., "VETA X-ray Data Acquisition and

Control System." This paper describes the computer system
architecture and software used for the conduct of the VETA

testing, and the test data archive.

G.Chartas et al., "Correcting X-ray Spectra Obtained from

the AXAF VETA-I Mirror Calibration for Pileup, Continuum,

Background and Deadtime." This paper describes the initial

stages of the data reduction, which consist of extracting

the true counting rate attributable to X-ray line photons,

from the broad pulse height distribution which is measured.

P.Zhao et al., "AXAF VETA-I Mirror Encircled Energy

Measurements and Data Reduction." This paper describes some

of the measurements taken after the VETA testing in order to

understand the precision of the pinhole motions. It also
gives a detailed discussion of the correction for the effect

of the transmission of the mesh supporting the proportional
counter window. This correction results in our final

encircled energy estimates.

D.A.Schwartz et al., "Precision of the Calibration of the

AXAF Engineering Test Article (VETA) Mirrors." This paper

presents an error analysis showing how well the measurements

of encircled energy were made.



M.D.Freeman et al., "Image Analysis of the AXAF VETA-I
Mirror." This paper presents analysis of the 2-dimensional
scans of the image core with an 0.2 arcsec diameter pinhole,
to unfold the facility effects and present the intrinsic
mirror performance.

J.P.Hughes et al., "Surface Finish Quality of the Outer AXAF
Mirror Pair Based on X-Ray Measurements of the VETA-I." This
paper analyzes the results of the FWHMscans, the encircled
energy measurements, and the wing-scan measurements in order
to deduce the intrinsic circumferential slopes and
constraints on the surface deviation amplitudes for spatial
frequencies above 0.i mm .

E.M.Kellogg et al., "The X-ray Reflectivity of AXAF VETA-I
Optics." This paper confronts our measurements of the
absolute effective area with theoretical predictions for the
reflectivity of Zerodur. This leads to issues on the
composition of Zerodur, on extrapolation of wing-scan data
to the entire focal plane, on contamination of the glass,
and on the relation between synchrotron and MSFC X-Ray
Calibration Facility measurements.

In addition, much other information appears in our two
previous reports:

"AXAF VETA-I X-Ray Testing: Quick Look Results," SAO-
AXAF-AR-91-080, 15 November 1991.

"AXAF VETA-I X-Ray Testing: Preliminary Analysis
Report," SAO-A_F-AR-92"002, i0 January 1992

Key results:

Development of a complete data reduction and analysis
system, including understanding of effects which were only
revealed during the actual testing.

Performance of the data reduction and analysis for all the
proportional counter pinhole data.

Development of a knowledge base of what off-line
characterization is needed of the XRCF, prior to HRMA
calibration. This includes pinhole images of the X-ray generator
assembly (XGA), measurements of the XGA filter thicknesses, and
line to continuum ratios for the different targets as a function
of the full range of XGA operating voltages and currents.

Development of a computer system architecture and archive
which can serve for the HRMAcalibration. The lessons learned
allow us the first precise definition of requirements for a
Master Control Computer system for HRMA calibration.

Measurements of intrinsic PI/HI properties, including



circumferential slope errors, model dependent constraints on
correlation amplitudes at various scales, and micro-roughness
amplitude vs. index of an assumed power law shape of the spatial
power spectrum distribution function.

Measurements of parameters incidental to the veta-I test,
and relevant to the HRMAcalibration; e.g., particulate and
molecular contamination of the mirrors; unfolding of mechanical
distortions; needs for spatial and temporal monitoring of X-ray
generator uniformity; and a data base for estimation of the time
duration of HRMAtesting.

Compilation of a rich set of "lessons learned" to expedite
the planning and conduct of the HRMAand HRMA/SI calibration
process.

Future work remains in the following areas:

An investigation of the sensitivity of the data reduction to
the use of nominal VETA reflectivity vs. energy for the
bremsstrahlung continuum, rather than more precise reflectivity
vs. energy which might result from analysis of synchrotron
measurements, or by simply iterating the present best fit to
effective area.

Study results of the sealed BND vs. the flow BND, to assess
possible spatial non-uniformity of the X-ray beam from the top
vs. the bottom of the VETA aperture.

Re-investigate detailed effects of dust scattering,
considering the recent information on the distribution of cerium
oxide particles on the mirror surface, and incorporate into the
overall VETA model of surface roughness.

Update the VETA model with a raytrace using a higher
resolution interface to represent the mechanical displacements,
to include distortions of flexures. This model must also include
effects of the adhesives. We are also awaiting data which we have
requested on the thermal gradients during the VETA testing, and
the Kodak models of the ensuing thermal distortions.

Quantitative confrontation of the ring focus data to such
updated VETA models. Assess the general utility of ring focus
testing for the HRMAcalibration. Explain the origin of the
apparent multiple ring structure.

Reassess what models of the PI/HI surface deviations are
consistent with both the X-ray data, and the final metrology
data, when the latter becomes available.

Assess the degree of consistency, and identify any
inconsistencies, between the X-ray data and the final PI/HI
optical metrology.



Provide the ASC with the archival VETA test data base.

Provide the ASC with the models and tools used to analyze
the VETA-I test data.

Assessment of the errors in measuring absolute effective
area. Utilize the error estimates from the VETA test to produce

error budget predictions for the HRMA calibration.

Assess a quantitative limit to the amount of hydrocarbon on
the surface of the actual VETA-I.

The above work, and other effects which may be revealed as

significant in our further processing, will be reported in
internal SAO memos, as studies relative to our monitoring of the

HRMA contractor, and as reports of our Calibration Task Team
activities.

Conclusion:

The VETA-I X-ray test program was a spectacular success. The

primary objective, that of measuring the intrinsic FWHM of the

PI/HI was <0.5 arcsec, was achieved, despite the initial

mechanical test configuration for which the raw data showed a

larger FWHM. Secondary objectives of assessing how well a mirror

could be calibrated clearly establish that measurements of the

HRMA can be made in the regime of 1%, and give much detailed

information on equipment and procedures to accomplish this.

Development of a prototype tool to estimate test time has already

led to a confident scheduling of the HRMA and HRMA/SI XRCF

calibration timeline. Many of the software analysis tools, the

software architecture, and the data abase archiving formats, will

be directly applicable to the ASC tasks for oversight of AXAF
calibration.
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ABSTRACT

The X-ray generator for the AXAF VETA-I mirror test is an electron impact X-ray source with various
anode materials. The source sizes of different anodes and their intensity distributions were measured with

a pinhole camera before the VETA-I test. The pinhole camera consists of a 30 /zm diameter pinhole for

imaging the source and a Microchannel Plate Imaging Detector with 25 #m FWHM spatial resolution for
detecting and recording the image. The camera has a magnification factor of 8.79, which enables measuring

the detailed spatial structure of the source. The spot size, the intensity distribution, and the flux level of

each source were measured with different operating parameters.

During the VETA-I test, microscope pictures were taken for each used anode immediately after it was

brought out of the source chamber. The source sizes and the intensity distribution structures are clearly
shown in the pictures. They are compared and agree with the results from the pinhole camera measurements.

This paper presents the results of the above measurements. The results show that under operating
conditions characteristic of the VETA-I test, all the source sizes have a FWHM of less than 0.45 mm. For

a source of this size at 528 meters away, the angular size to VETA is less than 0.17 arcsec which is small

compared to the on ground VETA angular resolution (0.5 arcsec, required and 0.22 arcsec, measured). Even
so, the results show the intensity distributions of the sources have complicated structures. These results

were crucial for the VETA data analysis and for obtaining the on ground and predicted in orbit VETA Point

Response Function.

i. INTRODUCTION

The Advanced X-ray Astrophysical Facility (AXAF) is NASA's third Great Space Observatory, scheduled
to be launched in the late 1990s. 1 The main element of AXAF is its X-ray telescope which consists of four

nested Wolter Type-I mirror pairs. The Verification Engineering Test Article-I (VETA-I), made of Zerodur
with a diameter of 1.2 meters, is the uncoated outmost pair.-" Its mirror figures and surface quality were

measured using an electron impact X-ray source at tlm X-ray Calibration Facility (XRCF) of the Marshall

Space Flight Center (MSFC) from August to October of 1991. X-rays generated in the source chamber
traveled 528 meters inside a X-ray Guide Tube before reaching the VETA, and were then focused in the

focal plane 10 meters behind the VETA. Four types of measurement were made as listed below with their

required precisions:

• Full Width Half Maximum (FWHM, expected less than 0.5 aresec). + 0.05 aresec.

• Encircled Energy. 4- 2%.
• Effective Area. 4- 5%.

• Ring Focus.

Ideally, a point source with a pure monochromatic line for each energy should be used. But the pure



monochromaticX-raysourcedoesnot existandit is alsoimpossibleto constructa pointsourcewithina
finitedistance.Thereforewehadto measuretheX-raysourcespatialandspectraldistributionasthey
weregeneratedin thesourcechamber.Thispaperdealswith thesourcespatialdistribution.Thespectral
distributionis discussedelsewherein thisVolume.3

Thesourcesizeandintensitydistributionmeasurementwasmadeat XRCFinJuneof1991.Thefollowing
sectionsdiscussthetechniquesweusedfor themeasurement,themethodweusedto analyzethedata,and
theresults.Section2 brieflydescribestheX-raygeneratorof XRCFusedfor theVETAtest. Section3
explainsthepinholecamerasetupandthemeasurement.Section4showstheimagestakenbythepinhole
cameraanddiscussthedataanalysisprocess.Section5presentsthesourceanodepicturestakenduringthe
VETA-Itest.Section6givesthefinalresults.

2. VETA-I X-RAY GENERATOR

The X-ray Generator Assembly (XGA) at XRCF is housed in the source chamber building and interfaces
to the Guide Tube through a 6 inch vacuum gate valve. The other end of the 500 meter Guide Tube is

connected with the giant VETA test vacuum chamber in the control building. Figure 1 is a schematic
diagram of the XGA: From right to left there are: An alignment telescope port connected to the end of

the Guide Tube; then there are bellows and the 6 inch Gate valve. Next to it is the source/filterwheel
chamber which houses the filter wheel holding up to nine X-ray filters of different material. Rotating a big

feedthrough nob on the top of the chamber enables us to change the filters with in two seconds and without

breaking the vacuum. At the end there is the X-ray Generator Head, which houses the X-ray source that

produces X-rays by electron bombardment of various anode materials. There is (not shown in the figure) a

2.75 inch gate valve and bellows in between the filterwheei chamber and the Generator Head. The whole
XGA is mounted on a Newport optical table. Figure 2 is a simplified view of the X-ray source, which basicly

consists of a tungsten filement cathode and a target anode made of various materials. Each anode has a

conical shape surface with an angle of 30 degrees from horizontal and 10.7 mm diameter at the bottom. The

SOURCE/rlLTERWHEEL CHAMBER

ACCESS DOOR

--ROTARY FEEDTHROUGH

4' GATE VII.VE

ELLOWS

PORT FOR ALIGNt4ENT

TELESCOPE

XRCF X-RAY GENERATOR
SOURCE CHAMBER DESIGN

E

o o_

Io

Figure I: XRCF X-ray Generator Assembly.
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Figure 2: XRCF X-ray Source for tile VETA Test.

electron beam, emitted from a heated 0.9 mm diameter tungsten filement located 10 mm above the anode,

is accelerated and focused (with a bias focus cap) to a small spot on the target anode. The X-rays produced

as a result of the electron - target interaction are projected through a X-ray filter then down the Guide Tube

to the experiment. The X-ray source size is limited by the dimensions of the electron impact area rather
than by an aperture. The output of the X-ray source is principally characteristic of K and L lines from the

anode material superimposed on a bremsstrahlung continuum. The X-ray energy and flux may therefore be

controlled by proper selection of target material and electron beam energy, which is controlled by the anode
voltage. Proper selected filters are used to suppress the bremsstrahlung continuum and low energy photons.

Generally, filters are made of the same material as the target since the characteristic emission energy of an

element is slightly below the absorption edge energy. A pure element is therefore "transparent" to its own

emission lines. Filter thicknesses were generally chosen to attenuate the X-ray beam by a factor of 2 to 5
at the wavelength of interest. Five anode targets (aluminum, carbon, copper, molybdenum and zirconium)

were used for the VETA-I test. Their characteristic X-ray lines with mean line energy, operating anode

voltages and corresponding filter thicknesses are listed ill column 1 through 4 of Table 1.

3. X-RAY SOURCE SIZE MEASUREMENT

Understanding that the knowledge of the source size is crucial to the VETA test and the subsequent data
analysis, a pinhole camera measurement of the source size was planned and carried out between June 18 and

20, at the XRCF. Figure 3 is a schematic diagram of the measurement setup. It is the same setup as shown

in Figure 1, except instead of the Guide Tube a High Resolution Imager (HRI) is connected to the 6 inch

gate valve and, instead of the fiiterwheel, a filter/pinhole holder is inserted near the X-ray Generator Head.
The X-ray Generator Head is the actual one]ater used for the VETA test. The pinhole is a laser drilled

30 _um diameter circular hole on a 12.5 #m thick gold foil. The HRI is a microchannel plate detector with

an area of 26.4 x 26.4 mm "_and 25/_m FWHM resolution. 4 Its axis is tilted 2 degree from the X-ray pipe

axis to increase the sensitivity. The distances are 170.7 mm between the source and the pinhole and 1500.9
mm between the pinhole and the HRI. This configuration gives a magnification factor 8.79. Therefore this

pinhole camera has a 2.8/zm resolution for the source spots, which enables measuring the detailed spatial

structures of the source. Keep in mind that 0.5 arcsec for VETA is 1.28 mm at the source. We will use this

as a scale in the following figures and tables. Source spot from six anodes were measured with this pinhole

camera. Table 1 lists representative measurements that have a good electron beam focus and source spot.

From columns 5 to 10, there listed filters, anode voltage, emission current, integration time, HRI counts,

and filename for each run. Please note that copper anode was not measured but later used for the VETA

test, while magnesium and silicon anodes were measured but not used for VETA test. Because most of the



Table I. X-ray Sources for the VETA and Pinhole Test

X-ray
Line

AI-K

C-K

Cu-L
Mo-L"

Zr-L

Mg-K

Si-K

Energy VETA Test

keV Filter pm V kV
1.488 AI 10.0 8.0

0.277 Poly 2.0 4.0

0.932 Cu 0.5 7.0

2.334 Mo 2.0 17.0

2.067 Zr 2.08 12.0

1:254

1.741

Pinhole Test

Filter_m VkV ImA Tsec
None 8.00 0.18 30

None 8.01 0.106 90
Al 25.4 8.06 2.01 45

None 2.10 0.17 300

None 5.03 0.40 30

Poly 12.7 5.02 2.01 30

None 7.00 0.50 15'

None 8.00 0.10 60

Ag 2.0 9.02 0.50 20
None 9.00 0.15 30

Ag 2.0 9.04 0.60 30
Ag 2.0 10.05 0.75 30
None 6.00 0.50 30

Al 25.4 8.02 4.01 30

None 5.06 0.10 400

None 7.08 0.50 45
None 7.00 0.75 30

HRI cnts' File

7045 a_3_l

13737 t20
6124 t23

9450 c_2_1

6196 c_3_3

6118 c_4_1

4233 m_3_5

5803 m.,?._3

4765 mA_4

5507 z_3_2
4809 z_4_2

9113 z_4_3

7785 mg..3_l

3377 mg_4_l
5497 s_2_2

5763 s_3_2

3993 s_4_3

CL-@I?_ I

?1[ V/_VE /
l

2g. 13 /r

!

\

U

Figure 3: XRCF X-ray Source Size Measurement Setup.



VETAtestX-rayfilterswere not available at that time, all of tile low flux runs used no filters, and tile high
flux runs used filters not exactly matching the ones later used in the VETA test. This should not affect

the source size because the filters were only used to suppress the continuum which is much weaker than the

lines. The X-ray generator operating conditions (viz., emission current and bias voltage) were selected to be

representative of those later used during the VETA-I test. The integration time was chosen to have at least
3000 HRI counts.

4. X-RAY SOURCE IMAGES AND DATA ANALYSIS

The recorded HR.I data were stored on floppy diskettes and then transferred to our Sun Work Station.

The data were analyzed and displayed with IRAF/PROS (Image Reduction and Analysis Facility / Post-
Reduction Off-line Software) software system. We did deconvolution of the image by using Lucy's technique, 5

considering a tophat function as the Point Spread Function (PSF) of the 30/zm pinhole. Because the size
of the pinhole PSF on the HRI (0.294 mm) is much smaller than that of the source image (see Figure 4),

deconvolution of the image can hardly make any difference. Therefore we chose not to spend the time for

image deconvolution. All the figures shown in this paper are from the original data.

Figure 4 shows one of the X-ray source images from an aluminum target. Figure 4(a) is a contour plot

of the image with contour levels equal to 2, 10, 20, 35, 50, 65, 80, 90, 100 percent of the peak intensity.
The X and Y axes are the horizontal and vertical directions of the source spot, respectively. Figure 4(b) is

a 3D plot of the same image with 1 x 1 mm 2 area in the X-Y plane and intensity in the Z direction. The

little circle in Figure 4(a) indicates tile size of the 30 pm pinhole Point Spread Function on the HRI. It is

much smaller than the source image size. Therefore the deconvolution process was not necessary. Figures 5

through 9 show the same kinds of plots for carbon, molybdenum, zirconium, magnesium, and silicon targets,
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Figure 4: Aluminum Source Image. Figure 5: Carbon Source Image.
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respectively.It isseenthat all tlle imagesareabouttile samesizeandhavesimilarstructures.Generally
speaking,thesourcespotsaremuchsmallerthan1.28mmor0.5arcsecandalittle narrowerin thevertical
direction(FacilityZ-axis)thanthehorizontaldirection(FacilityY-axis).A distinctivefeaturefor all the
imagesis that therearethreeintensitystripesalongtheverticaldirection,whichcanalsobeseenin the
anodepicturesin thenextsection.Thisisprobablydueto thesurfacefinestructureof thesourcefilament.
Figure10showsfourmicroscopepicturesofthefilament,withmagnificationfactors35,339,1340and2820,
respectively.Therearemanyfinestripesalongthefilament.Becausetheelectronsaremostlikelybeing

( c ) ( ,:x )
Figure 10: X-ray Source Filament Pictures. Magnification factors are (a) 35, (b) 339, (c) 1340 and (d)
2820. There are many fine stripes along the filament, which caused the three intensity peaks in the source.

emitted at the peak of the stripes and the filament is aligned in the X-ray direction, electron beams hit the

anode target in this striped pattern. From the VETA point of view, the stripes are in the vertical direction,
which agrees with the images recorded.

Figures ll through 16 are the image profiles projected onto Y and Z axes. The image features mentioned

above are clearly shown in these projection profiles. Since these are not Gaussian or any other type of regular
profiles, we give six parameters to characterize the source size. They are the RMS, FWHM, and Full Width
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Figure 13: Molybdenum Source Image Projection Profile.
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10% Maximum (FW10%M) in Y and Z directions. For all tile images, tile FWHM is less than 0.45 mm or

0.35 mm in horizontal or vertical directions, respectively. For aluminum and carbon targets, the pinhole test

results here give the actual source intensity distribution for the VETA test since the operating conditions are

the same for both tests. For molybdenum and zirconium targets, the anode voltage was set higher during
the VETA test in order to achieve desired beam flux. Especially for molybdenum, the anode voltage for

VETA test is 17 kV but the highest voltage used for the pinhole test is only 9 kV. This is mainly because the

source molybdenum filter used for the VETA test was labeled incorrectly. A two micron molybdenum filter
was requested but the actual thickness of the filter was 5.25 micron, found in the spectrum analysis after

the VETA test. 3 This difference reduced the Mo-L line beam flux by a factor of 9. Without knowing that

the thicker filter was used during tile VETA test, the anode voltage was increased to obtain an adequate
flux level. Therefore the pinhole test results do not reflect the real intensity distribution of the molybdenum

and zirconium source during the VETA test. IIowever, we still can use the pinhole test results to make an
estimate. As we can see in Figure 13 and 14, a certain amount of halo appears around the source intensity

peak when the anode voltage is increased, but tile peak width and shape stayed about the same. We will

show in the next section that this was true even for the VETA operating voltage.

5. X-RAY SOURCE ANODE PICTURES

During the VETA test, three microscope pictures, with magnification x7, x12.5 and x35, were taken for

each used anode immediately after it was brought out from the X-ray Generator Head. Figure 17 shows the
x7 and x35 pictures for the aluminum anode. Figures 18 through 21 shows the same pictures for the other

four anodes used for the VETA test. These pictures were taken directly above the anode - a view angle

90 degrees from the VETA. The spots where electron beam hit the target and the X-rays were generated
clearly match the source images taken by the pinhole camera, especially the three intensity stripes. The spot

sizes from the pictures agree with the pinhole test results (Because the anode surface is 30 degrees from the
horizontal, the source size in the vertical direction is the length of the spot in the picture divided by v_).

However, the copper anode picture, which was not measured in the pinhole test, shows a different and bigger

TX .\hulfinuna.-\l:Odo 35X ..klurninm:,.-knod(:,

Figure 17: Aluminum Source Anode Pictures. x7 (left), x35 (right). Actual anode size: 10.7 mm diameter.



7X Carbon .-\node :?,SX C'_rt_,n .\nod,,

Figure 18; Carbon Source Anode Pictures. x7 (left), x35 (right). Actual anode size: 10.7 mm diameter.

'X Copper _nod,' ._SX C'Opl_r r .-\n;,rh'

Figure 19: Copper Source Anode Pictures. x7 (left), x35 (right). Actual anode size: 10.7 mm diameter.
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Figure 20: Molybdenum Source Anode Pictures. x7 (left), x35 (right). Actual anode size: 10.7 mm diameter.

7X Zirconi,,m .\nod_, 35X Zirccmi,ml .-Xn()(t,,

Figure 21: Zirconium Source Anode Pictures. x7 (left), x35 (right). Actual anode size: 10.7 mm diameter.



Table 2. X-ray Source Intensity Distribution Measurement

Energy Anode V
keV kV

1.488 8.0

0.277 5.0

0.932 7.0

2.334 9.0 b

2.067 10.06

1.254 6.0

1.741 7.0

X-ray
Line

AI-K

C-K

Cu-L a

Mo-L

Zr-L

Mg-K

Si-K

Results

Width RMS FWHM FWI0%M

in mm arcsec mm arcsec mm arcsec

Y .165 0.065 .375 0.147 .481 0.188

Z .122 0.048 .225 0.088 .323 0.126

Y .260 0.102 .353 0.138 .517 0.202

Z .237 0.093 .212 0.083 .360 0.141

Y .23 0.09 .52 0.20 .66 0.26

Z .14 0.06 .25 0.10 .36 0.14

Y .433 0.169 .368 0.144 .588 0.230

Z .418 0.163 .192 0.075 .350 0.137

Y .555 0.217 .443 0.173 .1798 0.702
Z .492 0.192 .269 0.105 .1580 0.618

Y .152 0.060 .204 0.080 .499 0.195

Z .124 0.049 .243 0.095 .355 0.139

Y .198 0.077 .397 0.155 .515 0.201

Z .177 0.069 .234 0.091 .342 0.134

a Width estimated from anode photo.

b Below the VETA operating voltage.

spot. We only made a rough estimate of its size based on our understanding of other anode pictures.

6. RESULTS AND DISCUSSIONS

Table 2 lists the final results of the X-ray source intensity distribution measurements. For each source

size, it lists RMS, FWHM and FWl0%M in both horizontal (Y) and vertical (Z) directions. For all the

targets, the source sizes were smaller than the measured VETA FWHM. For the aluminum and carbon
sources, of which we used to measure the FWHM of the VETA, the measurements were done under the

same operating conditions as the VETA test. For molybdenum and zirconium sources, the measurements

were done at a lower anode voltage than the VETA test. Combining the results of the pinhole test and the

anode pictures, we conclude these two source sizes should still be the same even though there are more halos
around the peaks. The copper source, of which we didn't make pinhole measurement, has a bigger size based

on the anode picture. An accurate measurement of the VETA encircled energy and effective area was made

only with the aluminum, carbon and zirconium sources. 6'v The results of this X-ray source measurement

were used to analyze the VETA data, to deconvolve the point spread function, to characterize the mirror

surface figure and to predict its in orbit performances, s'9
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1. ABSTRACT

The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility(AXAF) Verification
Engineering Test Article-I(VETA-I) was measured by the VETA-I X-Ray Detection System(VXDS). The VXDS was based

on the X-ray detection system utilized in the AXAF Technology Mirror Assembly(TMA) program, upgraded to meet the

more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors; 1) a High

Resolution Imager(HRD which provides X-ray imaging capabilities and 2) sealed and flow proportional counters which, in

conjunction with apertures of various types and precision tr,'mslation stages, provide the most accurate measurement of

VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages,

apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the

installation of the VXDS into the Marshall Space Flight Center(MSFC) X-Ray Calibration Facility(XRCF). We discuss in

detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation

systems, flow counter gas supply system, apertures and thermal monitoring system.

2. INTRODUCTION

The Advanced X-ray Astrophysics Facility(AXAF), will be the third of NASA's Great Observatory series, having been
preceded by the Hubble Space Telescope and Gamma Ray Observatory, and to be followed by Space Infra Red Telescope

Facility. The AXAF, managed by NASA's Marshall Space Flight Center(MSFC), will be the largest imaging x-ray telescope

flown in this century, will have the best angul,'u" resolution and will have response to higher energy, 10 keV, than any prior

high resolution imaging telescope. A more complete description of the AXAF may be found in references 1 and 2.

A major technical challenge of the AXAF program is the fabrication of the AXAF Wolter Type 1 X-ray optics to tolerances

never before having been achieved in such large X-ray optics. Fabrication of smaller optics to the required tolerances was

demonstrated in the TMA program. However, it was decided that the fabrication technology for large optics should be

demonstrated by test prior to proceeding with the full AXAF program. The VETA-I test program was thus instituted. In this

program the largest pair of AXAF optics was to be fabricated to final tolerances, mounted in a test mount and tested in X-

rays to demonstrate conclusively that the performance requirements had been met.

An X-ray test of the 10 meter focal length AXAF optics would require a new test facility, the X-ray Calibration

Facility(XRCF), built at MSFC in place of the existing XRCF which had been used for calibration of the Einstein

Observatory(HEAO-B) and testing of the TMA.

Testing of the VETA-I to the required levels would also require more accurate X-ray test equipment than had been

previously available. An X-ray Detector Assembly(XDA) had been developed by the Smithsonian Astrophysical

Observatory(SAO) for testing of the TMA. It had been utilized at MSFC in the HEAO-B XRCF for two TMA tests and a

number of other tests of various X-ray systems. It was decided to upgrade the XDA for testing of the VETA-I.

Additions and modifications made to the TMA XDA to make it suitable for VETA-I testing included: 1) thin window flow

proportional counters for low energy testing and new sealed proportional counters with better performance, 2) new, more

accurate four-axis translation system for proportional counter scans, 3) new apertures for the proportional counters, 4) flow

counter gas supply system, 5) new supporting structure for beam normalization proportional counters, 6) thermal monitoring

system and 7) integrated workstation control and data acquisition system. Retained in the system were the HEAO-B

breadboard HRI and its data acquisition system and the basic structure and drive mechanisms which provided instrument



selection,focusadjustment,HRIverticalmotionandX-rayshuttercontrol.

Anoverviewof theVXDSandits useinVETA-Itestingwill begivenbelow.Manyelementsof theVXDShavebeen
coveredindetailinotherpapers,andthesewillbementionedbriefly.SeveralimportantVXDSsubsystemswillbediscussed
indetail,particularlyin relationtotheiras-measuredperformance.

3. VXDS OVERVIEW

3.1 Requirements

The VXDS was required to measure the mirror pair alignment and imaging performance of the VETA-I. Specifically, the
system was required to measure:

1. Mirror pair alignment to within +/-0.14 arcseconds per axis.

2. Full Width half maximum(FWHM)to within +/-0.05 arcseconds.

3. Encircled energy to within +/-2% fractional energy error.

4. Effective area to within +/-5%.

3.2 VETA-IX-ray Detector Assembly

(X, Y, Z)=XDA
Co-ordinates located
at normal focus.

Axes Parallel To
Facility Axes

HRIZ Normal

Foct_

Counter

Apertures
on Counter

•Aperture Hate

PCY

PCZ

/
/ XDA T

Figure 1. Schematic Diagram of the VETA-I XDA

The VXDS utilized three different types of X-my detectors; 1) a HEAO-B High Resolution Imager(HRI), 2) flow

proportional counters(FPC) and sealed proportional counters(SPC). The HRI, an FPC and an SPC were mounted on a set of

translation stages which were located at the focus of the VETA-I. This assembly of detectors and translation stages was



designatedastheVETA-IX-rayDetectorAssembly(XDA).TheVETA-IXDAis illustratedinFigure1,andis shown
pictoriallyinFigure2asit wasinstalledin theMSFCXRCFfortheVETA-Itest.TheVETA-IXDAco-ordinateaxesare
alsoshowninFigure1.Theoriginof theXDAco-ordinatesystemisfixedwithrespectto theXDAbaseandisnominally
locatedatthefocusof theVETA-IwhentheXDAisproperlypositionedfortesting.TheXDAco-ordinatesarenominally
paralleltotheXRCF facility co-ordinates when the XDA has been properly aligned. The XDA X axis is along the VETA-I

optical axis, positive towards the VETA-I from the XDA. The XDA Z axis is nominally vertical, positive up, and the Y axis
is nominally horizontal, completing a fight-handed co-ordinate system.

The XDA structure and the arrangement of the XDA translation axes are shown in Figure 1. The X-ray detectors are

mounted on the "XDA Top Plate", which is capable of being translated in the X and Y directions. These translation stage

motions are designated as "PRIMX" and "PRIMY', with the stage motion sign convention illustrated in Figure l(large

arrows). The "PRIMX" motion is utilized to adjust the focus position of the XDA such that the detector focal plane is co-
incident with the VETA-I focus. The "PRIMY" motion is primarily utilized to select the detector to be used, the HRI or a

proportional counter. It is also utilized to adjust the Y position _of the XDA such that the selected proportional counter

aperture is within reach of the counter translation stages (discussed below). The HRI is mounted on a Z axis translation stage

whose motion is designated as "HRIZ", with a positive stage motion being upwards. TheTXDA F[_ and SPC and apertures
for these counters are carried by an integrated set of four translation stages, two in the Y direction and two in the Z. The

counters and apertures make up a sub-assembly designated as the counter/aperture translation system, or "CAT". This entire
sub-assembly mounts on the Top Plate of the XDA.

The translation stage arrangement of the CAT is shown in both Figures 1 and 2. From "ground" on the XDA Top Plate the

stage order is PCAY, PCAZ, PCY and PCZ. The proportional counter apertures are carried on structure which is carried by
both PCAY and PCAZ. The counters themselves are carried by all four stages. This arrangement allows selection of the

counter and aperture combination to use by movement of the PCY and PCZ stages such that the chosen counter is positioned

behind the chosen aperture. The counter and aperture together Can then be moved relative to the X-ray beam by movement of
the PCAY and PCAZ stages.

Figure 2. VETA-I XDA Installed in XRCF



3.3 Beam Normalization Detectors

An FPC and an SPC were also located on a structure, shown in Figure 3, just in front of the VETA-I(towards the source from

the VETA-I). Their position was such that they intercepted the X-ray beam just outside of the VETA-I aperture annulus and

inside the overall beam limits, which were set by the size of the X-ray guide tube. They were used to monitor the X-ray flux

incident on the VETA-I and thereby allow normalization of data from the focal plane detectors. These proportional counters

were designated as "beam normalization detectors(BND)".

a L_

_:i!lm, Irl,,,_

Figure 3. VXDS Beam Normalization Detectors

3.4 Flow Counter Gas Supply System

Operation of the XDA and BND FPC's required a flow counter gas supply system(GSS). The GSS was located outside of the
XRCF vacuum chamber and supplied gas through flexible hoses and feed-thrus into the chamber. The GSS is shown in

Figure 4. The GSS was capable of supplying either methane or P10(90% argon, 10% methane) at a controlled pressurc
between 100 and 1000 tort. Safety systems were also incorporated to prevent dumping of flow counter gas into the chambcr

through a failed flow counter window.

3.5 Thermal Moniioring System ............

A Thermal Monitoring System(THM) was incorporated to measure temperature at 20 locations throughout the VXDS

hardware. Thermistors were utilized along with a Hewlett-Packard Model 3852A data acquisition system. Temperatures

monitored included each proportional counter, each XDA motor, the GSS accumulator and various points on the XDA

structure.



3.6 X-ray Data Acquisition and Control System

The X-ray Data Acquisition and Control System(XDACS) included both the electronics and cabling needed to run the
detectors, translation stages and gas supply system as well as the extensive computer control system used to operate the
system and to store and analyze the test data. The XDACS is discussed by Brissenden(this volume).

p

4. TRANSLATION STAGE PERFORMANCE

4.1 PRIMX, PRIMY and HRIZ Translation Stages

The translation stage performance requirements varied from stage to stage, depending on the function of the stage and its'
heritage. The PRIMX, PRIMY and HRIZ stages were carry-overs from the TMA XDA and had a resolution of 2.51.t. The
PRIMX and PRIMY stages incorporated Sony Magnascale linear position sensors which were used for closed loop control of

position through the XDACS. The HRIZ stage did not have a position sensor and was controlled in an open loop mode by
counting steps. Each of these three stages incorporated an absolute zero indicator and limit switches at the ends of travel.

The absolute accuracies of the PRIMX or HRIZ stages were not critical to the performance of the VXDS. The function of the
PRIMX stage was to adjust the focus position of the XDA. The depth of focus of the VETA-I(on the order of 1001a) and the
knowledge of the focus position of the apertures(+/-101a) and HRI focal plane were large when compared with the
repeatability of the stage(+/-2.51a). Also, the focus position was always measured relative to the PRIMX zero reference
position. As long as this did not shift we could always move the XDA to the correct focus position for each detector well
within the accuracy needed. The HRIZ accuracy was not critical since it was utilized only to position the HRI, an imaging
detector with a one inch field-of-view, in the vertical axis.

The PRIMY stage was utilized for large moves to select either the HRI or proportional counters for use and also for small

moves to place the chosen proportional counter aperture on-axis. The use of PRIMY for aperture positioning was dictated by
the limited travel of the PCAY stage as compared with the extent of the apertures in the Y direction. The XDACS software

was developed in such a way that a given aperture could be placed on-axis (that is, the center of the aperture co-located with



the current definition of the X-ray beam center) by any valid combination of PRIMY and PCAY stage positions which

yielded the correct sum of the two. The accuracy requirement for PRIMY was therefore driven by the need to repeatably
locate the beam with different combinations of PRIMY and PCAY stage postiion. The positioning resolution of the PRIMY

stage was 2.5it(one motor step). The readout resolution was lit and the manufacutrers specified accuracy for the readout was
better than +/- 10it over 1 meter of travel).

During the VETA-I test some difficulty was experienced with maintaining accurate beam center positions. The problem was

that we could not always return to an aperture in which the beam had been "centered"(that is, located in Y and Z axes) and
find the beam still near the center of that aperture(the beam drift was monitored and was not significant). The differences in

beam center position were often 30it to 50it or sometimes more. In addition, we could not always locate the beam in a new

aperture, even though we had carefully centered the beam in a different aperture and had very accurate knowledge of the
relative positions of all of the apertures. This did not always occur, however. It was finally determined that the beam center

errors occurred when the PRIMY axis had been moved to either reach a new aperture or to come back to the original
aperture, but with a different combination of PRIMY and PCAY. The result of the problem was to lengthen the test times

somewhat, due to the need to perform "beam centering" procedures each time the aperture was switched. The results of the
tests were not compro_mi_sed, however. _.........................

After the VETA-I test a series of measurements were made to determine the accuracy of the PRIMY stage. These were made

using an HP laser position measuring system, and are documented in reference 3. The results are shown in Figure 5, wherein

the PRIMY position errors are plotted vs. commanded move distance. The Figure shows PRIMY errors to be on the order of

0.61a to 0.81.t per millimeter move. The sense of the error is that the true distance moved(measured by the HP laser) is always

less than the indicated move (as measured by the Sony Magnascale) on the PRIMY stage. In the next generation of X-ray
detection equipment the PRIMX, PRIMY and HRIZ stages will be replaced, thereby correcting this problem.
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Figure 5. PRIMY Position Errors

4.2 PCY, PCZ, PCAY and PCAZ Translation Stages

As discussed above in Section 3.2 the PCY and PCZ stages on the CAT were used to move the selected proportional counter

behind the selected aperture. The required positioning accuracies (including readout inaccuracy) for the PCY and PCZ stages



r

were +/-51a over the entire travel range (approximately 200ram) of each stage. Testing using an HP laser position measuring
system verified that these accuracies were met.

The PCAY and PCAZ stages were used both to select an aperture for use and to perform various types of scans through the

X-ray beam, with the proportional counter held fixed behind the selected aperture. One dimensional scans in either the Y or Z
axis and a two dimensional raster scan in both Y and Z were used extensively in the VETA-I test. The accuracy desired for

aperture selection was +/-3p over the entire range of travel(approximately 100mm for PCAY and 150mm for PCAZ), even
though the PRIMY stage was not as accurate. The reason for this was to allow very accurate aperture to aperture moves
using PCAY and PCAZ alone. Apertures were grouped together such that the smaller apertures could be reached by PCAY
and PCAZ moves only. Figures 6 and 7 show acceptance test data for the PCAY and PCAZ stages. Positioning errors are
plotted over the entire travel range of each stage. In each case the +/-3ta error limits were met.
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Figure 6. PCAY Stage Position Errors - Full Travel

The most demanding use(in terms of accuracy) of the PCAY and PCAZ stages was to perform the one and two dimensional
scans. These scans were typically small in extent, with very small scan steps. A typical one dimensional scan would be to
scan the 51aaperture in either Y or Z in steps of 21.tover a range of 200p. A typical two dimensional scan would utilize the
10p aperture, scanning in steps of 10p. over a 19 x 19 scan matrix(1901a by 1901a). For these short scans we utilized a "motor
incremental mode" of scanning. In this mode the encoder feedback was NOT used, and the movement was made by motor

steps alone. In addition, the scans were performed in such a manner as to remove translation stage backlash. For example,
when performing a two-dimensional raster scan all rows were scanned in the same direction, and the stage was always
moved beyond(to the left of) the first point in the row so that the the backlash was taken out in the righward move to the first
scan point in the row. Using this mode the errors were below lit at any scan point. This accuracy was demonstrated using the
HP laser position measurement system. A typical test run is shown in Figure 8, wherein position error is plotted vs. stage
position for a 30_t scan in steps of 51a.The maximum error in this case was 0.21a. A 1 p scan position error was utilized in
developing the error budgets of the VXDS. With this error the overall performance requirements were shown to be met.
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5, PROPORTIONAL COUNTER APERTURES

The most accurate measurement of the performance of the VETA-I was made using proportional counters in conjunction

with various types of apertures located in front of the counters. The accuracy of this approach is atlributable to the high

spatial resolution which can be obtained with small, precision apertures in front of the counters, good energy resolution

provided by the counters and the use of the BND counters to normalize the focal plane counters during scans. The general

arrangement of counters and apertures on the XDA is shown in Figures 1 and 2. In addition to the counters on the XDA, two
counters were utilized for beam normalization, as discussed in Section 3.3 and shown in Figure 3. Precision apertures were

also placed in front of each BND counter.

The arrangement of apertures on the XDA "aperture plate" is shown in Figure 9.

Figure 9 Apertures on XDA Aperture Plate

Three rows of aperture holders, each row containing five holders, are located on the plate. In addition, circular apertures are

machined directly into the aperture plate. These machined apertures are located between the rows and columns of aperture

holders. Three different types of apertures were provided:

1. Circular apertures, commonly referred to as "pinholes", even though the largest was 20mm in diameter.

2. Annular apertures with a variety of nominal diameters and annulus widths, referred to as "annuli".

3. Linear apertures, referred to as "slits", in both horizontal and vertical orientation.

A complete listing of the apertures provided on the XDA is given in Tables l(pinholes), 2(slits) and 3(annuli). The apertures

on the BND are given in Table 4. The tables provide the aperture name, nominal dimensions, open area, equivalent

diameter(pinholes), method of manufacture and method of measurement. Three different fabrication techniques were used

used for the apertures. The smallest apertures were laser drilled into 12p gold foil which had been bonded into machined

"aperture holders". These aperture holders were then fastened to the aperture plate, using both screws and a locating pin, and

tack bonded to the plate. Other apertures were machined directly into special aperture holders and attached to the plate as

described above. Finally, a number of circular apertures were machined directly into the aperture plate. Three methods of



measurementof aperture area were also used. The smallest apertures were photographed with a scanning electron

microscope(SEM). The boundary curve was then digitized using precision calipers and a SEM photograph of a calibration

standard, which provided a grid of lines approximately 0.46ta apart. This calibration photo allowed compensation for SEM

scale factor variation. The estimated accuracy in measurement of bound,'u'y points was better than 0.01p. in each axis. The

boundary data were then entered into the IDEAS CAD system which calculated the open area of the aperture to an accuracy
of 0.02% (reference 4).

Mid-size laser drilled apertures were inspected at the laser drilling vendor's facility using an optical microscope and
translation stages with an estimated accuracy of +/-0.2_. The boundary co-ordinates were entered into the IDEAS CAD

program and the open area calculated. Larger apertures machined into the aperture plate were inspected using a two-axis

video zoom system and translation stages accurate to lta. Two orthogonal diameters were determined for these larger circular
apertures. The average diameter was used to calculate the open area.

Aperture Area Equivalent Fabrication Measurement

Name (Sq mm) Diameter Method Method

2p. 7.707923X10-6 3.13p. L SEM

5p. 28.33479X10-6 6.01la L SEM

10p. 104.96409X 10-6 11.56_t L SEM

25p. 511.55011X 10-6 25.52p. L SEM

501a 1926.3078X10-6 49.52p. L M

100p. 7660.07X10-6 98.76p. L M

300p. 74155.591X 10-6 307.28p. L M

500p. 198109.55X 10-6 502.241a L M
0.75mm 0.407150 0.720mm P V

1.0mm 0.716303 0.955mm P V

1.5mm 1.824147 1.524mm P V
2.0mm 3.122771 1.994mm P V

3.0ram 6.955939 2.976mm P V

5.0ram 19.322051 4.960m m P V

7.5mm 43.556561 7.447mm P V
10.0m m 78.006654 9.966m m P V

20.0mm 313.845185 19.990mm" M V

Fabrication Method:

L=Laser drilling
M=Machined

P=Machined into plate

Inspection Method:

SEM=Scanning Electron Microscope

M=Vendor Microscope

V=Video Camera and Stages

Table 1. Circul,'u" Apertures(Pinholes) on XDA Aperture Plate

The measured open area of the apertures are the geometric areas. Vignetting of the beam occurs due to the fact that the X-

ray beam from the VETA-I is a converging cone with a cone angle of approximately 6.8 degrees This factor is significant for
the smaller apertures, and is then into consideration in the test data analysis.

Figure 10 shows SEM photographs of several of the VETA-I apertures.



(a) lmm x IOOB slit

(c) 300p. x lOp slit (d) 101a Pinhole

Figure 10 SEM Photographs of Aperuures

4F

Type

Horizontal slit

Horizontal slit

Vertical slit

Vertical slit

Nominal Dimensions Area Fabrication Measurement

Length x Width (Sq mm) Method Method

300p. x 10p. 0.00266520 L

loo0B x loop 0.09730713 L

300p. x 10p 0.00263928 L

loo01.t x 100p. 0.09480202 L

Fabrication Method:

L=Laser drilling
M=Machined

P=Machined into plate

Inspection Method:
SEM=Scanning Electron Microscope

M=Vendor Microscope

V=Video Camera and Stages

SEM

SEM

SEM

SEM

Table 2. Slit Apertures on XDA Aperture Plate



Aperture Nominal Dimensions Area Fabrication Measurement

Name Diameter x Width (Sq ram) Diameter Method

100la Annulus 100_t x 101a 0.00204820 L M

3001a Annulus 300Ia x 301a 0.01869377 L M

600la Annulus 6001a x 601a 0.07951131 L M

1.0mm Annulus 1.0mml.t x 100_t 0.27067390 L M

4.0ram Annulus 4.0mm_ x 400/a 4.1978070 L M
20mm Annulus

Fabrication Method:

L=Laser drilling
M=Machined

P--Machined into plate
Inspection Method:

SEM=Scanning Electron Microscope
M=Vendor Microscope

V=Video Camera and Stages

Table 3. Annular Apertures on XDA Aperture Plate

Part Aperture Area Equivalent
Number Name (Sq mm) Diameter

7533-8362 S/N 1 BND Flow Counter 314.158 20.000mm

7533-8362 S/N 2 BND Sealed Counter 315.356 20.038mm

Table 4. BND Apertures

6. FLOW COUNTER GAS SUPPLY SYSTEM

The flow counter gas supply system provided either methane or PI0(90% argon, 10% methane) at a controlled pressure. Gas
from the selected supply bottle was regulated to a pressure of approximately 5 psig and then fed into an accumulator via an

electronically controlled "pulsing" valve. This valve would activate for a set time period whenever the measured pressure in

the accumulator would drop below a computer controlled pressure setpoint. Gas from the accumulator would flow through

gas lines into the XRCF vacuum chamber and to the XDA and BND flow counters, then return to the gas supply system(see

Figure 4). The gas would then flow across a manually adjustable needle valve into a vacuum pump on the gas supply system.
The exhaust gas from the vacuum pump was routed out of the XRCF building via an exhaust line.

Important performance characteristics for the gas supply system were its' stability about a setpoint(+/-0.5 torr), absolute

accuracy of pressure regulation(+/-2 torr) and pressure repeatability(+/-1 ton-). The absolute accuracy and repeatability were

functions of the pressure transduced used. A pressure transducer was selected which met the accuracy and repeatability

requirements. The stability requirement was met be providing a large accumulator to minimize the pressure rise caused by

each gas pulse and minimizing the flow rate to the extent practical. Plots of pressure vs. time over long and short time periods
are shown in Figures 11 and 12. The data show short term stability to be on the order of +/-0.2 tort.
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7. SYSTEM TEMPERATURES

Twenty thermistors were placed at critical points on the VXDS. These thermistors were read by the XDACS via the HP
3852A data acquisition system and logged in the test data files. Temperatures monitored included proportional counters,
motors, various structural components and the gas supply system accumulator. The flow proportional counter temperatures
were of particular importance since the counter efficiency is related to gas density. The gas supply system maintained the
pressure constant in both the XDA and BND flow counters, but the density would vary, and hence the efficiency, ff the gas
temperatures were different. The logged temperatures were used to compensate for this effect and therefore ensure that the

BND counter would properly normalize the XDA flow counter. A plot of counter temperature vs. time is shown in Figure 13.

8O Counter Temperatures
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Figure 13. Proportional counter temperatures vs. time

The time duration of the plot is approximately 250 hrs, commencing near the start of the VETA-I test. A key feature shown
on the plots is the large decrease in temperature of the BND counters(BNDSPC and BNDFPC) as compared with the
counters on the XDA(XDASPC and XDAFPC). This was due to a cold condition which developed in the front of the XRCF
vacuum chamber, near the BND. The large difference in counter(and therefore gas) temperatures made the density correction
important in the data analysis.

8. CONCLUSIONS AND FUTURE WORK

The TMA XDA, an existing set of test equipment, was significantly upgraded to perform the testing on the VETA-I. The

upgrades were necessary to support low energy testing(flow counters), provide enhanced accuracy(CAT & apertures), greatly
improve the test efficiency and data analysis capabilities(XDACS) and to adapt the system to the new XRCF. The system
was developed between mid-1989 and mid-1991 and was installed in the XrRCF in June, 1991. VETA-I testing commenced
in late August, 1991 and continued through late October, 1991. Additional tests were performed on the VXDS itself from
December, 1991 through May, 1992.



TheVXDSperformedwellthroughoutthetestseries,withnomajorfailureswhichstoppedthetesting.Themostsignificant
technicalproblemswerethefailureof theXDAsealedcounterandahigherthanexpectedlevelofelectricalnoisein the
XDAproportionalcounters.Wewereabletofindwork-aroundstobothproblems.Anothersignificantissuewastheeffectof
theflowproportionalcounterwindowmesh,whichisdiscussedindetailinReference5.

The,architectureof the VXDS, particularly the integrated ,and networked compuler control system, discussed in Reference 6,
was a major success. The data acquisition and analysis capabilities of the VXDS were crucial to the success of the VETA-I
test.

An X-ray detection system for the AXAF High Resolution Mirror Assembly(I-IRMA) calibration is now being developed at
SAO. The system, the HXDS, will utilize major elements of the VXDS. The dated TMA equipment will be replaced and
improvements will be made to other elements where necessary. The overall control architecture of the VXDS will be carded
forward to the HXDS.
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ABSTRACT

We describe the X-ray Data Acquisition and Control System (XDACS) used together with the X-ray Detection

System (XDS) to characterize the X-ray image during testing of the AXAF P1/H1 mirror pair at the MSFC X-ray

Calibration Facility. A variety of X-ray data were :acquired, analyzed and archived during the testing including:

mirror alignment, encircled energy, effective area, point spread function, system housekeeping and proportional

counter window uniformity data. The system architecture is presented with emphasis placed on key features that

include a layered UNIX tool approach, dedicated subsystem controllers, real-time X-window displays, flexibility in

combining tools, network connectivity and system extensibility. The VETA test data archive is also described.

2. INTRODUCTION

The Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article (VETA) consists of the
largest paraboloid and hyperboloid pair of Wolter type I grazing incident mirrors contained within the AXAF

telescope and represents the first elements of the flight mirror to be manufactured. The VETA P l/l=l 1 mirror pair was

aligned and tested with X-rays in the X-ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC)
during 1991 September and October. The alignment and PRF characterization was performed with the VETA

X-ray Detection System (VXDS) comprised of imaging and non-imaging focal plane detectors, beam normalization

and monitor detectors, motorized detector and aperture stages, gas control system, thermal monitoring system and
central data acquisition and control computer system 1.

The X-ray Data Acquisition and Control System (XDACS) performs the control, data acquisition, monitoring,

analysis and logging functions of the VXDS. The XDACS consists of the computers, busses, controllers and soft-

ware required to perform these functions and is the subject of this paper. We describe the network and software

architecture (§3 and §4), and the VETA data archive and data base used to retrieve data for detailed analysis (§5).
A summary is given in §6.

3. NETWORK DESIGN AND SUBSYSTEM DESCRIPTION

The VXDS design was based on tile detection system used to test the 2ethnology Mirror Assembly (TMA), a 2/3
scale model of the next to inner AXAF mirror 2. The TMA test system consisted of a number of independently

controlled subsystems, some of which were retained and incorporated into the VXDS. A key requirement of the

VXDS design was to provide the VETA test operator with integrated procedural control and monitoring over
all subsystems from a single central workstation. In order to meet this requirement a network architecture was

developed that employed synchronized controllers interfaced to hardware subsystems and connected to a central

SUN Microsystems 4/330 workstation via one of three different bus or network types: RS232, IEEE 488 or ethernet.

A variety of bus types was required to integrate existing TMA subsystems.

The network architecture (Figure 1) shows the central workstation aud peripherals, XDACS and some XRCF subsys-

tems, analysis workstations, busses (ethernet, IEEE 488 and RS232), external network connection and InterRange

Instrumentation Group (IRIG) analog time signal used for synchronization.

The subsystems shown in Figure 1 are briefly described in Table 1 and explained in more detail in Reference 1.

The basic components and operation of the system are also described here to provide a context for the software
description.
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Figure 1: The XDACS/XRCF network architecture combines a variety of bus types. Hardware components are

denoted by ellipses, network components (controllers and computers) by rectangles and XDACS perhipherals by

rectangles with rounded corners. XRCF subsystems that interface with XDACS1 but were not delivered by SAO

have dashed lines. The TMA DACS and HRI subsystems were inherited from the TMA system and are marked
with a diagonal line.

X-rays reflected by the VETA-I along the -x axis were detected by instruments located in the focal plane (FP).
The FP detectors include a High Resolution Imager (HRt), a Flow Proportional Counter (FPC) and a Sealed

Proportional Counter (SPC). The SPC and FPC are mounted on orthogonal (y - z) motor stages behind the

aperture plate which contains apertures of various sizes and shapes. The apertures include pinholes ranging from

2/_m - 20 mm in diameter, annuli, and horizontal and vertical slits. The aperture plate is mounted on orthogonal
(y - z) motor stages such that the counters are carried when the aperture plate moves. The counter and aperture

plate motor drives constitute the Counter Aperture Translation (CAT) subsystem which is mounted on the Prime X

and Prime Y coarse motor drives. The HRI motion is controlled by Prime-X, Prime Y and the HRI Z motor drive

and is located in the -y direction from the CAT, along Prime-Y. A set of four quadrant shutters located at the

entrance to the VETA-I allows X-rays in each quadrant to be blocked for mirror alignment and focus tests. The

Prime drives, HRI-Z and shutter motors are controlled by the Test Mirror Article Data Acquisition and Control

System (TMA DACS) subsystem. The Prime drivesl CAT and FP instrumenta{ionare collectively Called the X:ray

Detection Assembly (XDA).

:In addition to the FP:detec-tors two Beam Normalization Detectors (BND), a large area flow and large area sealed

proportional counter, are mounted on the BND structure located at the entrance to the VETA. The Gas Supply

System (GSS) controls the type and flow of gas to the two flow counters and 19 thermistors located throughout

the XDA constitute the thermal monitoring (THM) system. The central workstation and controllers constitute the

XDACS which provides the controls and data acquisition functions for all subsystems. The X-ray Flux Monitor

(XFM) subsystem consists of a flow and sealed proportional counter, gas system and analysis workstation and is

used to monitor the X-ray source flux. The Motion Detection System (MDS) 3, detects the relative motion between

the FP instruments, VETA and X-ray source. The XDA, BND, GSS, TttM system, XDACS, analysis workstations,

MDS and XFM interfaces are collectively named the VETA X-ray Dete(:tion System (VXDS).



TABLE 1: XDACS SUBSYSTEM DEFINITION AND DESCRIPTION

SUBS. DEFINITION DESCRIPTION

XDACSI

XDACS2

XDACS3

TMA DACS

CAT

HP

MCA

MCA PC

HRI

HRI PC

MDS PC

XFMI

XMCA PC

XFM2

XHP

EXT NET

X-ray Data Acquisition & Con-

trol System l

TMA Data Acquisition & Con-

trol System

Counter Aperture Translation

Hewlett Packard

MultiChannel Analyzer

MCA Personal Computer

High Resolution Imager

HRI Personal Computer

Motion Detection System PC

X-ray Flux Monitor 1

XFM MultiChannel Analyzer

X-ray Flux Monitor 2

XFM ttewlett Packard

External Network

Central controlling workstation provides operator command interface

and displays. Issues low level subsystem commands, receives data

and status streams, archiw_s all data, and performs limited analysis.

Analysis workstation.

Analysis workstation.

TMA motor drive system provides movement in x, large scale y

moves and moves the HRI in z. Four quadrant shutters located

in front of the VETA may be opened and closed.

Accurate (2 /,m) motor stages move the focal plane proportional

counters behind the aperture plate and move the aperture plate.

The CAT is mounted on the TMA motor drives.

lip 3752A IEEE488 controller contains the GSS (Gas Supply Sys-

tem) and THM (Thermal) monitoring system cards. The GSS con-

trols gas flow through the Focal Plane and Beam Normalization flow

proportional counters and the THM provides thermal monitoring at

19 locations on the instruments, motors and structure of the XDA.

Controls and receives data from the FP and BND flow and sealed

proportional counters.

Interfaces with the MCA via Ortec board. Receives commands from

and transmits data to XDACS1 via TCP/IP.

Focal plane imaging detector.

Interfaces with the HRI via custom board. Receives commands from

and transmits data to XDACS1 via TCP/IP.

MDS detects relative motion between the FP instruments, VETA-I

and X-ray source. The PC transmits TCP/IP packets to XDACS1.

Workstation controls a smaller version of the MCA and HP (GSS and

THM) subsystems. The XFM subsystem is located near the X-ray

source and monitors the source flux. The software used to control

and acquire data from th,: XFM was based on the HP and MCA

software subsystems (little change was required).

Analogous to the MCA PC.

Workstation used as a display station for XFM spectra, gas and

temperature data and status.

Analogous to the HP in controlling the XFM gas system and thermal

monitoring, but in addition controlled the proportional counter high

voltage power supply.

Internet network connection.

_w

During testing, the operator issued high level commands with appropriate parameters at the XDACS1 console.

Examples of tests performed by high level commands included: generation of VETA-I alignment errors using

the quadrant shutters and FP instruments (either HRI or scanning proportional counters), beam centering with

successively smaller apertures, encircled energy measurements and 2-D ,napping of the PRF and HRI images.

The XDACS1 acquired both autonomous and non-autonomous data during a test. For example, a 19 × 19 2-D scan

of the PRF made with the FPC behind the 10/_m diameter circular aperture was performed by first moving the

FPC behind the 10 pm pinhole and then scanning the aperture plate in a 2-D raster about the current beam center.

At each point in the scan, proportional counter spectra Were acquired in both the FP and BND counters and stored

in files, one per point. Logs of operator keystrokes, motor positions, command parameters and low level subsystem

commands were also generated. Upon completion of the scan the FP integrated line counts were normalized at

each point with BND data and an image file Was generated. The 361 files containing spectral data, the image file

and logs constituted the non-autonomous data from the test. Data from the MDS, GSS and THM subsystems

were acquired, displayed and stored continuously and independently of a given test, and were the autonomous data



streams.

Data acquired during testing were time stamped with either the XDACS1 clock or IRIG-B time signal depending

on the required accuracy. The MDS data allowed time tagged events recorded by FP instruments to be corrected
for excessive motion in the y - z plane. Synchronization to 10 ms between the MDS, HRI, MCA and XFM was

required to support such corrections, and these subsystems accessed the IRIG time signal at the controller level via

a PC board. Data from other subsystems were arch:veal with ,,, l second accuracy. We note that the stability of

the XRCF, test benches and XDA were such that MDS corrections were never needed.

The synchronization at the front-end controller level illustrates how the XDACS1 was isolated from direct hardware

control. In general, the XDACS1 issued commands to the controllers and received back status and data streams.

The controllers were designed to operate safely in the event of XDACS1 going off-line. Time critical data were

transferred using TCP/IP (e.g., MDS, ttRI and proportional counter data) and displayed with -,, 1 sec resolution

and other data such as gas pressure or temperature were displayed after archiving with -_ 5 sec resolution.

4. SOFTWARE ARCHITECTURE

The software architecture is shown in Figure 2 and employs a layered structure which includes software resident

on the hardware controller devices, low level and high level subsystem commands, procedural commands and the

user interface including real-time displays. A brief description of each element contained within Figure 2 is given
in Table 2.

The software layers allow the system to be viewed with increasing abstraction typical of an object oriented design.
Information about a subsystem is available only at the appropriate layer and complex high level commands and

procedures are built from simpler lower level commands. For example, the hri command (or object) allows the

operator access only to the l:IRI detector, and the xdamain command allows access only to the motors. The hridata

command located at a higher level has access to both the HRI and the motors and implements the concept of an HRI

image taken at different locations in the focal plane. The mcascan command combines the acquisition of proportional

counter spectra (mcadata), shutter motions (flapper) and motor stage motions (xdamain) to implement arbitrary

scanning capability. The highest level commands apply specific analysis to data obtained from the lower levels

(e.g., mcaalign calculates the mirror alignment error), or further combine functions (e.g., hrialiga coordinates the
shutter motion and HRI image acquisition, then calculates the mirror alignment errors).

The concept of information hiding also applies to the coordinate systems found within the XDACS1 software: The

low level xdamain program receives motor move requests in XDA coordinates which are transformed and maintained

in the motor-specific coordinates required by the motor controllers. At the highest level, the mirror alignment errors

are calculated by hrialiga and mcaalign in the XRCF coordinate system.

The client/server model featured in the software architecture also resulted from the object oriented design approach.

For example, the implementation of inca ds as a server allows multiple real time displays of proportional counter

data to execute simultaneously on workstations located in different locations: The clearly defined dependence of a

client on a server also allows straightforward startup and shutdown sequences for the multiple processes constituting

the system. The client/server model was also applied between the PC controllers and the SUN 4/330 using TCP/IP
sockets.

Commands at all levels are available to the operator from the shell. High level commands are shell scripts written in

korn shell (ksh) that integrate low level commands typically written in C or C++. The ksh is used both as a familiar

interface for the operator and as an integration 4GL. The string manipulation and pattern matching features of ksh

were used to construct file names in the high level scripts and relieved the lower level C and C++ programs from
such manipulation. Other standard UNIX tools such as awk, be, date, we, etc., were also used extensively. The

UNIX philosophy was extended to provide online documentation in the "man" page format.

The layered software architecture is extensible. New hardware subsystems may be added in a straight forward
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programs denoted by squares. Arrows indicate the direction of information flow (there is no significance in dashed
arrows other than they pass behind another box). Commands flow down the Figure and data and status flow from

the hardware up to the displays and data archive.

manner, often reusing code. Typical steps are (a) writing a hardware controller program, (b) creating a format
for the archived data product, (c) writing a display/monitor program, and (d) writing the appropriate scripts to
integrate with other existing subsystems.

A variety of analysis software was required by both the high level software and the operator. Access to analysis

functions is shown from the test procedure co,ands layer in Figure 2 and is described at the end of Table 2. The

majority of analysis routines were developed within the Image Reduction and Analysis Facility (IRAF) environment

and the remaining functions were coded as standalone programs. IRAF is an analysis environment used extensively

by Astronomers for multiwavelength data reduction and analysis, and provided many of the tools required for VETA
test data analysis.



TABLE 2: SOFTWARE MODULE DEFINITION

MODULE DESCRIPTION

Operator Inter/ace Layer

Operator Commands

MCA Display

Motors Display

HRI Display

Gas/Thermal Display

MDS Display

Commands are entered at the keyboard and the operator is prompted for parameters.

Statistics and status information, in addition to real-time data, are displayed as

commands execute. Operator may access commands from the Test Procedure and

High/Low-level Subsystem levels.

Displays proportional counter spectra from four MultiChannel Analyzer (MCA)

bufferssimultaneously in an X-window. The display program is a clientof the MCA

data server program (incads) and requests data every second. The operator may

zoom on a region of interest and display specificchannel counts with the cursor.

Statisticsand statusdisplayed and updated include: counts in the region of interest,

max and raincounts, integrationtime and dead time.

Positions of motors are updated as commands execute. Current position,min and

max allowed ranges and limitswitch status are displayed for the three TMA motor

stages,four CAT motor stages and four shutters.

Displays High Resolution Image (HRI) photon event data in X-window as received

from the hri server.Operator may pan, zoom, altercolormap and read pixelvalues
with mouse.

Displays gas pressures,valvestatus,temperatures and other statusinformation with

updates every 5 seconds. Parameter permitted rangc_ are alsodisplayed and operator

isrequired to acknowledge alarms for out of range conditions. The display program

requests data from the hpserv server.

Displays Motion Detection System (MDS) data receivedfrom the rodsserver. Average

displacements in the y - z focalplane are updated each second and displayed as a

scatterplot and in projection. Operator may selectscaleof plot.

Test Procedure Command Layer

beamcen

mcaalign

mcafocus

mcafwhm

hrialign

hriimage

Beam centering command. Performs 1-D counter/aperture scan in y and z centered

on current beam location. Calculates centroid of each scan, updates beam center and

outputs plot/data sheet. Used iteratively with smaller apertures to find X-ray beam

center.

Generates mirror alignment errors. Performs 2-D counter/aperture scan around cur-

rent beam center with the four shutters opened and closed at each scan point. Builds

four images from completed scan, calculates P1/HI mirror alignment tilt and focus

errors from centroids, and outputs data sheet. Used iteratively with smaller apertures

to provide VETA-I a_gnment corrections < 1 arcsec.

Generates focus error. Performs 2-D counter/aperture scan around current beam

center with two shutters opened and closed at each scan point. Builds two images

from completed scan, calculates the focus error, mo_,es to new focus and outputs data

sheet. Used to fine tune focus once alignment process is complete _
.... 7,,.

FWHM scan. Performs I-D counter/aperture scan around current beam center,

calculates FWI:IM and outputs plot/data sheet. Used to characterize the VETA-I

Generates mirror alignment errors. Acquires HRI images of the X-rays from each

quadrant of the VETA-I by successive!y opening each shutter with the other three

closed. Calculates tilt and focus errors from the centroids of each image, and gen-

erates data sheet. Used iteratively to provide VETA-I alignment corrections > 1

arcseC.

HRI image. Acquires a singleI-IRIimage, calculatessimple statistics(centroid,rain,

max) and generates a data sheet.



TABLE2: SOFTWAREMODULEDEFINITION(CONT.)

MODULE DESCRIPTION
gascommands Gas system procedures are implemented as operator defined scripts of sequences of gas

system commands, e.g., change gas, startup and shutdown procedures. Commands

include open and close valves, read pressure transducers, set pressure set points and
read thermistors.

High-level Subsystem Command Laver

=cascan Counter/aperture scanning program. The program is capable of performing a general

3-D scan with any counter/aperture pair. Consolidates all scanning calls from upper

layers in one program and incorporates shutter (flapper) movements.

Program is run every time data are taken with proportional counters, Clears the four

MCA buffers, sets the requested integration time, starts the integration and stores

the resulting spectra in an XDACS1 archive file. mcadata sends commands to the

MCA command server (inca cs) and receives data from the MCA data server (inca

ds).

Performs open/close operations on the four shutters located at the entrance to the

VETA-I. The program is called from mcascan during alignment and focus tests such

as mcaalign and mcafocus. Calls the low level tma program.

Performs coordinated counter and aperture motor moves, backlash removal, applies

offsets to current beam center if requested, determines if motors need to be moved

based on current configuration and knowledge of motor azcuracy, writes to high level

motor log and file headers. Operates as an interface to the lower level xdamain

program.

Program moves HRI to desired position and acquires a single image. Sends commands
to the HRI via hri and makes motor moves with xdataain.

Gas system commands, either single or as part of gas system procedures, are imple-

mented as requests to the HP server (hp serv).

Program is a client of the MDS server running on the MDS PC, makes a request

every second for MDS data and passes average 1 second data to display. Stores raw

and average MDS data in XDACS1 archive file.

mcadata

flapper

xdamove

hridata

gss

mds

Low-level Subsystem Command Layer
mcads

xdamain

hri

hp serv

MCA PC

CAT Controller

MCA data server returns MCA display client with data received from MCA PC.

Communicates with MCA PC via TCP/IP.

MCA command server passes MCA commands to the MCA PC via TCP/IP.

Passes TMA commands to the TMA PC controller software via RS232. Performs

low level string parsing, error checking and logging.

The program interfaces with both the CAT and TMA motor controllers via IEEE

488 and RS232 respectively, to move motors and monitor motor status. Motor moves

are made in either the XDA coordinate system (thereby hiding the motor specific

coordinate systems) or in the motor specific system.

Communicates with the HRI PC controller software via TCP/IP. Provides a com-

mand line interface to the r/RI-command set allowing exposure star! and abort.

HP server interfaces with the lip 3752A controller via IEEE488. Serves the gss

client, performs bus level error checking and logging.

Hardware Controller Layer

Software interfaces with the MCA hardware, passes on commands from the inca cs

and returns data and status to the inca ds via TCP/IP. Data files are written directly

to the XDACS1 archive via an NFS mounted disk.

Sequences of COMPUMOTOR controller commands allow single axis motor moves

and control parameters such a.s motor speed, limits and acceleration. The sequences

are used by xdamain only and are not available to the operator.



TABLE2: SOFTWARE MODULE DEFINITION (CONT.)

MODULE DESCRIPTION

TNA DACS

HRI PC

HP Controller

MDS PC

Other Architectural Elements

ANALYSIS

The software was inherited from a previous test and was left unchanged. The tma

and xdemain programs pass commands as strings which axe executed as though they

are typed by an operator at the TMA PC keyboard.

Software interfaces with the HRI electronics via a custom board and implements

commands received via TCP/IP from the hri program.

The HP 3752A code is written in BASIC and apphes the voltage-to-temperature

transformation to thermistor readings, and sends and receives status from gas system
commands.

Interfaces with the MDS hardware and executes the MDS data server process 3.

Data Files k Logs

Parameter Files

Software called by programs in the Test Procedure Commands layer. Analysis rou-

tines were developed in the IRAF environment 4 and made available from the shell.

File conversions into IRAF compatible formats are performed by analysis routines.

Other analysis software available included PVWAVE and standalone programs.

Programs in the Subsystem Commands layer generate the XDACS1 archive data files

containing raw and processed data e.g., raw MCA spectra, reduced 1-D and 2-D scan

data, and raw HRI images. Logs are created at this and higher levels, e.g., gas system

commands and alarms, all scan motor moves and operator commands.

Each command is associated with a parameter file containing the current values,

allowed ranges, type and default values of all parameters required to execute the

command. The set of all parameter files are maintained in a single directory and

represent a parameter data base for the entire system. The parameter files may be

accessed through either a parameter interface library or from the command line s.

5. VETA DATA BASE AND ARCHIVE

During the VETA test a variety of data were archived by the XDACSI including X-ray image data, proportional

counter scan data (1D and 2D) thermal monitoring, gas system monitoring, motion stability measurements and

other logging data.

The VETA test data archive was created during the VETA test as shown in Figure 3. Raw data streams were

received from the various subsystems, processed and stored as formatted archive data. HRI and MCA X-ray data

were stored together with a Set of header keywords containing information about the data and test environment.

Examples of header keywords include date, start time, finish time, integration time, operator, peak counts and

filename. In the case of MCA scan tests two levels of data file were s|ored: raw spectra (one file for each point

in the scan) and reduced scan data files containing the integrated counts as pixel values. In both cases header

keywords were stored together with the data. The scan pixel values derived from the raw spectrum during the test

represent "quick look" analysis since the integrated counts were derived by simply summing counts in a region of

interest rather than correcting the spectrum for known physical effects.

In addition to the quick-look analysis performed during testing, more rigorous reduction and analysis was performed

post-test that required flexible access to the archive. A set of data bases were constructed containing the header

keywords generated during the test and information derived from the data file attributes. Data base queries typically

generate a list of X-ray data filenames and their location within the archive.

The data base is comprised of four data base files in ASCII/rdb format:

• mcahriscn: common fields to both HRI and MCA data bases
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Figure 3: The VETA test data archive was constructed during the testing from both autonomous and n-l, ,,
tonomous data streams.

• hriscn: HRI image file keywords

• mcascn: MCA scan file keywords

• mcapch: MCA raw proportional counter spectra keywords.

There are numerous fields in the data base, for example the names of the first 10 fields (of 79) within the "mca.-,'nJ

database are: scanId, apsize, aptype, bcha.n0, bcha.al, counter, date, dcain, dcatav and dcbin

Queries are made using /rdb in the UNIX environment, for example the command:

column da_e filename aptype < mcascn I row 'aptype=="annulus"'

selects the fields "date", "filename" and "aptype" from the mcascn database and then selects only those rows wit h
the aperture type of "annulus". In this example the commands "column" and "row" are/rdb commands.

Archive extraction functions were developed to retrieve subsets of autonomous data sets such a.s gas system, thermal

and MDS data. These subsets are combined with the data files access,_d through data base queries to construct

time correlated test data sets. The process is usually performed automatically using a shell script.

6. SUMMARY

We have presented the network and software architecture of the X-ray Data Acquisition and Control System used to

control, archive and display data during the AXAF VETA-I X-ray test. The key features of the network architecture

include: diverse hardware subsystem control from a single SUN workstation, isolation of critical functionality on



front-endcontrollers,integrationof a varietyof bus types and extensibility. The key features of the software

architecture include: layered object oriented design, access to commands at all layers, client/server model, use of

ksh for 4GL integration and extensibility. The VETA test data base provides convenient access to data stored in
the data archive from the UNIX shell.

The VXDS system will form the basis for the next generation of equipment for testing of the assembled AXAF flight

mirrors and science instruments. The software and network architecture developed for the VXDS system proved

robust and will be extended to accommodate the new hardware anticipated for the next generation system.
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Abstract

The VETA-I mirror was calibrated with the use of a

collimated soft X-ray source produced by electron
bombardment of various anode materials. The FWHM,

effective area and encircled energy were measured with
the use of proportional counters that were scanned with

a set of circular apertures. The pulsers from the

proportional counters were sent through a multichannel

analyzer that produced a pulse height spectrum. In

order to characterize the properties of the mirror at

different discrete photon energies one desires to extract

from the pulse height distribution only those photons

that originated from the characteristic line emission of

the X-ray target source.

We have developed a code that fits a modeled
spectrum to the observed X-ray data, extracts the counts

that originated from the line emission, and estimates the
error in these counts. The function that is fitted to the X-

ray spectra includes a Prescott function for the resolution

of the detector a second Prescott function for a pileup
peak and a X-ray continuum function. The continuum

component is determined by calculating the absorption

of the target Bremsstrahlung through various filters,

correcting for the reflectivity of the mirror and

convolving with the detector response.

Introduction

The VETA-I (Verification Engineering Test Article-I)
consists of a pair of Wolter Type-I mirrors which are
intended to be used as the outermost set of the AXAF

from improvements in the mirror figure and surface

smoothness. A natural consequence of these improve-

cents is the need to use detectors with higher spatial and

energy resolution and the need to employ more

sophisticated data reduction techniques. The physical
properties of the VETA-I optic measured are the FWHM,

the effective area and encircled energy. Definitions of
these quantities are given in Kellogg et al 2. For the initial

analysis of the VETA-I proportional counter spectra we
used a quick-look analysis technique which basically

involved the summation of counts in a selected region of

interest. The quick-look data provided a fair description

of most of the mirrors properties with a moderate

amount of analysis. In this paper we will describe a more

elaborate method for analyzing the VETA-I data which
leads to a determination of the mirror effective area to

better than 5% and the encircled energy better than 2%. In
our analysis we will apply a set of corrections for the

spectral contamination of the measured proportional

counter data due to the existence of a bremsstrahlung

component in the X-ray source, pulse pileup effects

which distort the spectrum, background and deadtime.

In section 1 we provide a brief outline of the
experimental setup. A detailed description of the model

employed for the data reduction is given in section 2.

Finally section 3 is devoted to the presentation of the
results of the VETA-I data reduction and a discussion of

the effect of these corrections on the measured mirror

properties.

1. 0 The VETA-I calibration set up

(Advanced X-ray Astrophysical Facility) telescope. A The VETA-I calibration set-up is shown in figure 1. An
detailed description of the performance and scientific electron impact X-ray source with interchangeable

advances anticipated from AXAF observations are listed targets and filters is located 528 m away from the optic in

in reference 1. The improved sensitivity of the AXAF order to approximate an incident plane wave. The

mirrors compared with those of the Einstein and ROSAT parabola P1 and hyperbola H1 mirrors are made out of

X-ray telescopes results mainly from the larger zerodur and were supported by flexures. Their relative

attainable effective area of AXAF over a broader energy alignment and centering were adjusted with a set of

bandwidth and the higher angular resolution resulting linear actuators. The X-ray flux incident on the VETA-I
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Figure I. VETA-! cali_'ation set up

was=monitored by seaied:=and flow proportional
counters manufactured by LND Inc. while an identical
pair of sealed and flow counters were located at the focal
plane of the VETA approximately 10 meters behind the
optic. The flow counters have a graphite coated 1.7 l.tm
thick polypropylene Window. For energies _Iow 1.49
keV the flow counters were filled with methane at a

pressure of 250 Tort while for energies above 1.49 keV a

2.1 X-ray SOurce Spec_ .........

For the analysis of the VETA-I data we have
adopted Kramers relationship for the bremsstrahlung
emission office _o_t X'ray source:

I(E) = kZ(E,_..-E) ................. (1)

where Emax is the high voltage of the source anode, Z ismixture of 90% Ar and 10% methane (P10) at a pressure
of 400 Torr was used. The electronics associated in the atomic number ot the target and k is a fitt_param-
a--" "-'n- "ĥ -_a_ ar- sh^wn in fi---re 2 A set of eter with units of inverse ene-rgy. The spectra that we

periodic pulsers (not shown in the figure) were injected obtained from the beam momtor detectors allow a
into 2 multichannel analyzer (MCA) channels in order to direct fit to the continuum component at energies above

monitor the deadtime of the pulse height system. The
focused X-ray image was scanned by translating a plate
containing a set of pinholes, slits and annuli across the
image with a position accuracy of approximately 1 tan.

2.0 Model of the VETA-I monitor and focal plane
proportional counter spectra

The description of our model will trace the
sequence of events traced by X-ray photons as they are
produced through the deceleration of electrons in vari-
ous targets, transmitted through filters to minimize the
bremsstrahlung component, reflected by the P1-H1 mir-
rors and finally absorbed inside a proportional counter.
The resulting pulses are fed into a multichannel ana-
lyzer which converts their relative pulse height to a
channel address.

the characteristic X-ray lines, .....

2.2 Transmission of source filters and counter
windows

In section 2.6 we will show that one of the main con-

tributors to the error in the derived focal plane (XDA)
and beam monitor detector (BND) events is the contin-

uum component under the line peak. In order to mini-
mize the bremsstrahlung intensity under the peak a
source filter is used with an absorption edge slightly
higher in energy than the characteristic line. The prop-
erties of the source filters used in the VETA-I test are

shown in table (1). The errors quoted by the manufac-
tures are near 30% and are due to errors in the measur-

ing technique. The effective source filter thickness isthe

thickness determined by fitting a ensemble of BND
spectra and performing agridsearch of filtdr_hickness

vs. the ensemble average Z2 as Shown in figure 3. The

68.3% confidence level is just X2min (unreduced) +1.

Similarly an ensemble of BND spectra are fitted:in order
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to determine the strength of line and continuum emis-

sion of the X-ray source.
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strength and continuum s_refigth

The ratio of the effective thickness to the nominal

value for the thicknesses ranged between 0.9 for Zr and

approximately 2.6 for Mo. An independent measure-

ment of the Mo thickness performed in a post VETA test
provided similar results for the effective filter thickness

and strongly suggests an error in the labeled Mo nomi-
nal filter thickness.

Table 1:

Source Nominal Effective filter thickness

filters Thickness pd. pdeff

Parylene 2.20 X 10_ Cm 0_ _.I (1.7 --+0"1) X 10"4gr cm "2

AI

Mo

Zr

Cu

2.70 X 10"3gr cm "2

2.04 x 10"3gr cm "x

1.29 x 10"_gr cm z

4.48 x 10"4gr cm "2

(2.8 _.+0.1 ) x 10"3gr cm 2

(5.36 + 0.05) x 10-3gr cm;

(1.17 _+0.03) x 103gr cm :

i5.82 + 0_5) x 10_gr cm':

2.3 Resolution, efficiency and uniformity of

proportional counters used in the VETA-I calibration

The resolution function R(E) of a proporttorml

counter provides the response of a counter for an tr_-_

dent monoenergetic beam of X-rays of energy E. Vary,u,
resolution functions have been determined theorettcall_

by studying the statistics of secondary electrons prt,

duced by the primary photoelectrons and the multlp_

electron avalanches initiated by each secondary elecrn_

For energies above 2 keV the response can be apprw,
mated with a Gaussian with a mean proportional to thr

energy and a FWHM proportional to E 1/2. This approt_-

marion breaks down however at low energies where one

observes an asymmetry in the response. This is mainly

due to the small number n of avalanches produced per

secondary electron (n = the energy of the electron / ton-

ization energy) and consequently for low energies one

does not expect, according to the central limit theorem.
to obtain a Gaussian distribution.

For the present analysis the resolution of the propor-

tional counter is approximated by a function first

derived by Prescott 3 which takes into account the statis-

tics of multiple avalanches. The Prescott function has the
form:

3/4

to(rex) (2_ (re+x)) (2)= e,., 4e2 e

where the mean x of the distribution is x = m/Q2 and

the standard deviation is ff = 2_ Q, Q is the Prescott



width parameter. By minimizing the Prescott function

F(x), _xF(X) = 0, one can derive the following rela-

tionship between the mean and the width parameter:

rn 3 Q 9 Q2
- 1 + -_ + (3)

Xr,,ax 2 X,nax 16 X2max

In our algorithm the m and Q parameters of the line
component of the spectrum are fitted parameters. For
the determination of the measured continuum compo-
nent one requires to know the width parameter vs.
energy in order to convolve the detector response with
the modeled incident continuum component over the

measured energy band.
By fitting a range of X-ray lines we have produced

an empirical expression for Q(E) for E in the range of 0
to 23 keV:

Q (E) = aoE + al E2 + a2 E3 + a3 E4 (4)

with a0 = 0.08514, a1 = -0.13751, a2 = 0.08026, a3 =-

0.01552

The measured energy resolution and Prescott Q
parameter for the proportional counters used in the
VETA test are shown in figure 4.

_0.O4

"- 0.02

• ii •
0.00/

0.0 0.5 1.0 _ .S 2.0 2.S

X-lrily enm'4D' ( key )

'°i\ 1
1.5

._ r'wHu/t = o.["

i o:oo0.6 = =
0.0

0.0 0.6 i .0 1.6 2.0 2.5

X-rlly enerlD' ( kilV )

Figure 4. Measured Prescott Q parameter and proportional
counter energy resolution

2.4 Peak pileup correction

Soft X-ray spectra obtained during the VETA -I cali-

brations show evidence of peak pileup at high counting

rates. Each pileup count corresponds to 2 events that
were not separately detected in the multicharmel ana-
lyzer. At energies below the 1.49 keV AI line the poor
detector energy resolution does not allow a direct deter-
ruination of the pileup component. The pileup peak rep-
resents a small distortion to the spectrum and is cor-
rected for by performing a simultaneous fit to the line
and pileup peak. This fit provides a relation between the
percent pileup counts and the total event rate. The mea-
sured pileup versus total event rate is shown in figure 5.
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Figure 5 Measured pileup rate vs. total MCA event rate

We have compared our results to a theoretical model

presented in Johns and Yaffe4 which predicts that the
percent pileup follows the equation:

Nt'u - ( 1. - e-2px)
NXDA

(5)

where NXDA are the total number of focal plane events

originating from the X-ray line, Npu are the photon

events that are piled up, p is the average photon event
rate (from all MCA channels) and x is the characteristic

time of the MCA. The theoretical prediction is also
shown in figure 5. The fitted value for x is 1.85e-7 sec.
The measured pileup fraction f(p) is fit to a 3'rd degree

polynomial:

f(p) = b(1)13+b(2)p2+b(3)193

where b(1) = 4.845e-7, b(2) = 5.876e-11, b(3) = -2.441e-15

2.$ Extraction of X-ray line counts

The function that describes the model fitted to the

focal plane spectrum has the form:



fXDA(i) = fti,,,(i) + fcont(i) + fp.(i) + fbe, a(i) (6)

where fXDA(i) are the counts in the MCA pulse height

channel i, flme is the X-ray line component which

includes all excited K and L lines and their escape peaks

and is attenuated by the mirror reflectivity, fcont is the

continuum part of the spectrum which also contains the

fluorescence radiation that escapes the counter and the

effect of the mirror reflectivity, fpu is the pileup compo-

nent and fbgd is the normalized for live time back-

ground. In the calculation of the continuum and line

component we perform a convolution of the detector

response R(Ei,E j) with the incident X-ray spectrum. The

incident spectrum is a sum of nl X-ray lines of strength

al*s(Ej), where s(Ej) is the relative intensity of line Ej

obtained from reference 5, and a bremsstrahlung emis-

sion Brem(E k) of strength a2. For the focal plane spec-

trum we include the effect of reflectance off the mirror

by multiplying with the model effective area A(Ej) as

determined by ray tracing the P1-H1 mirror surface and

using Henke 90 optical constants for zerodur. The input
model effective area of the VETA-I is shown in figure 6

together with the energies at which the calibration was

performed.
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Figure 6. Input model effective area of the VETA-I

The line component of equation (6) is calculated by

using the expression:

nt

flin,(i) = a 1 ___ s(Ej)r:(Ei)Vw(Ej)Abs ( Ej) A (El)

j=1

× [ (l-esc(Ej,Et))R(Ei,E)+

+esc(Ej,El)R(Ei,E-Et) ]

For the continuum component we used:

ph

fcont(i) = a 2 _,_ TI(E k) Tw(Ek)A bs (Ek) B rem(E k)

k=l

x [ ( 1 -- esc (E k, Et) ) R(E i, Ek) +

+ esc (Et, El) R(E i, Et - Et) ]

Tf and Tw are the transmission of the source filter and

counter window respectively, Abs(Ej) is the efficiency of

the counter, esc(Ei,E j) is the probability of a fluorescence

photon of energy Ei escaping from the counter times the

fluorescence yield.

The background component is normalized to take
into account differences in the live time between the

t

background run and the test run. fbga(t) is the mea-

sured background MCA spectrum.

tin t x (1 --_.dtbga!.f,bg.(i)
fbgd(i) = tb'--Tg-d"( :_ atMcA)

were tint is the integration time, tbgd is the integration

time of the background run, dtbg d and dtMc A are the

deadtime of the background run and test run respec-

tively.

For extracting the counts that originated from the
X-ray line emission we begin by fitting the model func-

tion of equation (6) to the spectrum using a Marquardt

nonlinear least squares routine. We select a region of

interest (ROLL determined by the XDA MCA channels

(mo,m 1) and BND MCA channels (no, n1), around the line

peak and sum the measured pulse height counts. We
then subtract the fitted continuum component in the

ROI, subtract the pileup in the ROI, add the fitted line

counts outside the ROI, add two times the total pileup

counts (every pileup count corresponds to two events

detected as one count) and finally subtract the normal-

ized background counts. The extracted line counts for

the focal plane detector XDAp, c,b, corrected for pileup,

continuum and background effects, are given by the

expression:
rn_ m 0 - 1

gDAp, c, b = _, SXDa(i ) + ___ fline(i) + (7)

i=m o i=0



mm, ax m!

+ " + 2. x Npu - i u(i) - o2 = a2DAd.p, c ( I ) +
i = + = XDAd, p,c,b --tv,_ A

(9)

rn, tin t X ( 1. - dtbgd)

i= m o tbg d X

The extracted line counts for the beam monitor

detector BNDc, d, corrected for continuum and back-

ground are:

n 1 n o - 1

BNDc, a = _ SBND(i) + _, fUne (i) + (8)

i=n o i=0

n_z /,1 I

+ Z rune (i)- Zfcont (i)-

i=nl+1 i--n o

tin t X ( 1. -- dtbgd) .¢

tbg d x (1 -- dtBND) abe'

where SXDA(i) and SaND(i) are the counts in pulse

height channel i from the total focal plane and beam
monitor proportional counter spectra, dtxD A and dtBN D

are the deadtime in the MCA channels that contain the

XDA and BND spectra respectively.
The BND count rate is significantly lower than the

XDA count rate and pileup effects are less than 0.1%
and for this reason we have not included a pileup cor-
rection for the beam monitor spectra.

2.6 Error analysis implemented in spectral extraction

The objective of the VETA-I calibration was to mea-
sure the encircled energy with 2% precision and the
effective area to 5%. In the present analysis we will
present the calculated 1 c_error components of the mea-

sured effective area that are due to fitting errors, pileup
effects, bremsstrahlung, continuum, background sub-
traction and the deadtime correction. We now proceed
in propagating errors through equations (7) and (8) that
give the focal plane and beam monitor line events, in
terms of the corresponding quantities in counts and

percent deadfime.

Subscripts d,p,c and b to a quantity refer to dead-
time, pileup, continuum and background corrections to

that quantity. XDAp,c,b are the counts in the XDA spec-
trum originating from line emission and corrected for

pileup, continuum and background. The error contribu-
tions from each effect can be seen in the following equa-
tions where we have neglected errors in the deadtime
for the background, which contributes less than 0.05%.
The error in the focal plane counts is:

m! m o - 1
2

(_XDA,.,. b = Z SXDA (i) + Z fline(i) +
i=m o i=0

/nnulz

+ Z fline(i)+4"XO'2pu+O'2pufit+

i=ml+l

+(_2 ( tint× (l"--dtbgd) 12 ra!f,,.,+ . x Z fbga(i)
\tbg d × ( 1 dtXDA) i = m o

(10)

For the error in the beam monitor counts we neglect
the pileup terms due to the relatively low count rates
measured in the BND detector.

n I n o - 1
2

(_BND,, b = Z SBND (i) + Z fline(i) + (11)
i=n o i=0

njtmz

_., f.ne(i) + 0 2.t',o,, +
i=n!+l

( tintX (l"--dtbgd))2 i=n'
× Z fbgd (i)

klbg d × (1. dtxD A)
n o

t_pu is the standard deviation in the pileup counts, (_pufit

is the standard deviation of the pileup counts in the
region of interest (too,m1). The errors due to the dead-

time correction are:



+(

sXoA i,-sxoA i,i = rn 4 i = m 2 13_pl

1

tintX fpl
2( .. )) x (0.289) 2 + £ SXDA(i )

i=n%

2
i n5 n3 -_

SBIVD(i)-- _ SBND(i) |

i=,. __:e= I°=
j I,=

<1:( " )tintXfp2 ) x (0.289)2+ ,_, Ssivo(i)
i= n_

The pulse height channels over which the puls-
er counts appear in the XDA and BND MCA spec-

tra are (m4,m 5) and (n4,n 5) respectively. Since the

pulser used for the deadtime correction was peri-
odic, the error in the pulser counts as measured in
the MCA is :

li (X- _t) 2p (x) dx = 0.289 counts

while the error in the injected pulser rate is : fp =

02.89/tpulser, where tpulser is the time over which

pulser rate is measured.

The errors in determining the continuum com-

ponent from the fit are:

(_2 = Oa(i)a__ ont,XDA(i) jf co mr, XDA

j i=

2
n 1

_2 = n__o [ b(i)_.._(j)i_=nfCOnt, BND(i)]fcolt, BND

The summations are performed over the np vari-

ables (a(j) for the XDA spectrum and b(j) for the

BND spectrum) of the continuum component;

+

source filter thickness, line strength, continuum

strength, the Q Prescott parameter of the detector

response, the m Prescott parameter and the model

scaling factor.

3.0 Results and discussion

In figure 7 we present fits and their residuals to

the beam monitor and focal plane spectra for AI,

Zr,C and Mo source targets. The continuum com-

ponent for the carbon spectrum was measured in a

post VETA test where the proportional counter
gain was set appropriately such that the high ener-

gy continuum could be fitted. A set of apertures

with pinhole diameters ranging from 5 _-n to 20
mm were placed at the focal plane in front of the

XDA proportional counter in order to measure the

+ encircled energy at different radii.The calculated

encircled energy using both quick look and fitting
techniques are presented in figure 8. The difference

between encircled energy calculated by each meth-
od is very noticeable for Zr and Mo.This can be ex-

plained by referring to the model effective area of

the mirror in figure 6. Notice that near Zr the effec-
tive area curve is very steep. This implies that the

attenuation of the continuum component in the

XDA spectrum will be strongly dependent on ener-

gy, resulting in a line to continuum ratio in the re-
gion of interest quite different from the one

measured in the BND spectrum.

Since the largest error component in determin-

ing the line counts in a spectrum originates from
the continuum subtraction one desires to minimize

the continuum counts in the ROI by selecting a ROI

as small as possible around the X-ray line peak. Ob-

viously for detectors with better energy resolution
one may select narrower ROI's thus reducing the
error due to the continuum subtraction. We have

investigated the sensitivity of the calculated line

events in the spectrum with the selected region of

interest and found that it is insignificant. The varia-

tion of the calculated encircled energy with selected

region of interest for both the quick look analysis

technique and the spectral fitting technique is
shown in figure 9. Notice that the quicklook analy-

sis techniqueis very sensitive to the selected region
of interest. Initial values for the effective area used

in the fit to the focal plane spectra were obtained by

ray tracing the VETA-I mirror and using optical

constants as measured by Henke et al. The fi6xt it-

erative step is to repeat the analysis using the effec-

tive area as determined from the fits to the spectra

as input to the code.



In table 2 we present the measured 1 sigma uncertainties in the XDA and BND line events. The error in
the ratio XDA/BND at a certainenergy reflects the measured uncertainty in determining the encircled en-
ergy (EE) at that energy, since the EE for our experimental setup is approximately n x XDA/BND.

The energy scale of the pulse height channels is also determined with an iterative procedure. We initially
locate the pulse height channel that corresponds to the peak of the smoothed spectrum. This value is used
as an initial guess for the fitting routine which after a certain number of iterations provides the pulse height
channel that corresponds to the maximum of the fitted line component of the spectrum. The pulse height

_u 104

i 'o2

i 100

•'°;o'
lo

fit of o model to the BND AL-K (1.49 keV) spectrum

qo,.o  o,m
_.,= < ----AL--KOtId_el + : t

I / "%. <----AL--KoInho2÷ • I

,o'_

104

! lO2

i 100

• 10_

!o

10 _

104

! ,o2

i 100

-2

tO20

0

fit of o model.to the BND Mo-L (2.3 keV) spectrum

;.

..w__-: .,,_.._. _,_-,,_,_,_._'

! O0 200 300 400 50O

PH ch_'_el

fit of o model to the BNO Zr-L (2.04 keVI spectrum

 o,Bo

__-. .. _ . . - _,,_

,o_

104

i '°2

100

=
! o

_' -t0

flt of o model to the XDA AL-K (.1.4..9 keV_ spectrum

ROIXO ROtX 1

---AL-Kotpha 1 + ,_
/ \< -- --AL-- Kolpho2 ÷ -.

_. ,o2
i 100

'
! o

-_-20

i _06J

_, 104
u

i. '°2

"_ I00

. o:

0 100 200 300 4OO 50O
FH ct_onnel

10d_ fit of o model to the XOA Mo-L (2.3 keV) spectrum

RoJxo _o_x_
tO 4

. • • . , , . ..

__IL J Illlllllllll.llll

1 O0 200 30° 400 _00

PH ¢I_0o_ lfl

fit of o model to the XDA Zr-L (2.04 keVlspectrum

ROIXO ROIX

•_. _,,_---_,_,_,_,_,_,_,_,_,__._..-.._.-,_-..

1 00 200 300 400 500 100 200 300 400 500

]_H ¢lqO_t41! PH ¢honctel

| 1°_

._ 104

! lO_

i_ _00

o
|o
"! -20

fit of o model to the BND C-K _0.277 keY) spectrum

!
I

<--c-x ann I I .
I " I

_. 10 2

i 100

°C0/o

fit of o model to the XOA C_K. (0.277 key) spectrum

ROIXO ROIX 1

100 200 300 400 500 0 1 O0 200 300 400 500

PH ¢_1 PH chohnlll

Figure 7. Fits and residuals of a model to AI,Zr,Mo and C VETA-I spectra



.m_ i

M Jill _MII_! MI_M

O O0 OOO0 O00 0

E

0

Quick-look

0 Wit.b apeotrel eorre_Uo]

#Jr# g, FgO IJ_d #f.4140 f_JI44

Figure 8. Measured encircled energy using both quick-

look and ]itting techniques

treated in a separate paper by Zhao et al 6.

Table 2: Measured 1 sigma uncertainties in the XDA
and BND line events

C Cu A1 Zr

OxDa 0.37%' 0.2% 0.17% 0.53%

OBND 0.20% 1.1% 0.15% 0.66%

(_XDA 0.42% 1.2% 0.23% 0.85%

BleD

Mo

0.68%

1.2%

1.4%
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energy scale is then recalculated using the corrected

value for the line peak location. This procedure is

especially effective when dealing with low count

spectra and spectra with large continuum compo-
nents.

The effects of X-ray transmission attenuation

due to the proportional counter window mesh are
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ABSTRACT

The AXAF VETA-I mirror encircled energy was measured with a series of apertures and two flow gas
proportional counters at five X-ray energies ranging from 0.28 to 2.3 keV. The proportional counter has a

thin plastic window with an opaque wire mesh supporting grid. Depending on the counter position, this
mesh can cause the X-ray transmission to vary as much as 4-9%, which directly translates into an error in

the encircled energy. In order to correct this wire mesh effect, window scan measurements were made, in
which the counter was scanned in both horizontal (Y) and vertical (Z) directions with the aperture fixed.

Post VETA measurement of the VXDS setup were made to determine the exact geometry and position of

the mesh grid. Computer models of the window mesh were developed to simulate the X-ray transmission
based on this measurement. The window scan data were fitted to such mesh models and corrections were

made. After this study, the mesh effect was well understood and the final results of the encircled energy

were obtained with an uncertainty of less than 0.8%.

1. INTRODUCTION

The Verification Engineering Test Article-I (VETA-I), made of Zerodur with a diameter of 1.2 meters,
is the uncoated outmost mirror pair of The Advanced X-ray Astrophysical Facility (AXAF), the third of

NASA's four Great Space Observatories. 1 Its mirror figures and surface quality were measured at the X-ray
Calibration Facility (XRCF) of the Marshall Space Flight Center (MSFC) from August to October of 1991.2

X-rays generated by an electron impact source 3 528 meters away were focused by the VETA to its focal

plane, which is 10 meters behind the VETA: The focused X-rays were then detected and measured with the

VETA X-ray Detecting System (VXDS) built by SAO. 4 Four types of results were obtained, i.e. Full Width
Half Maximum (FWHM), Encircled Energy, Effective Area, and Ring Focus. All the measurements were

done with X-ray detectors placed in the focal plane, except the Ring Focus measurements, which were done

in the Ring focal plane (about 21 mm in front of the focal plane).

We first give some definitions:

Total Effective Area (or simply Effective Area): Tile total power reflected by the VETA into 27r
steradians, measured in units of cm 2. It is equal to the projected area of an equivalent mirror with 100%

reflectivity, or a projected area of P1 x R2(E,0), where P1 is the Paraboloid mirror of the VETA and R is

the mirror reflectivity as a function of X-ray energy and grazing angle.

Encircled Energy: The fraction of the power reflected from the mirror that passes through an aperture

of radius r, in the focal plane. It is measured ill units of the effective area or cm'- as a function of r. Therefore

it is also called encircled effective area.

Fractional Encircled Energy: The Encircled Energy normalized to that contained in the largest



apertureusedforthemeasurement,20mmdiameter(= 6.88 arcmin).

The requirements for tile VETA-I test was to measure the FWHM (expected to be better than 0.5 arcsec)

to + 0.05 arcsec precision, the Fractional Encircled Energy to + 2%, and the Effective Area to + 5%.

In this paper we discuss the VETA encircled energy and effective area measurements and their data

reduction for up to the 20 mm diameter aperture. The total effective area involves wing scan measurement
and is discussed in another paper in this volume. 5 Two major corrections were made to the raw data. The first

is the spectrum correction with which we take care of the spectrum contamination taken by the proportional

counter. The second, an even bigger correction, is the counter window mesh correction. The first correction
is discussed by another paper in this volume. 6 This paper mainly deals with the second correction.

In the following sections we discuss the techniques used for the measurements, the method used for the
wire mesh correction, and the results. Section 2 describes the VETA encircled energy measurements and

explains the X-ray detector window mesh effect. Section 3 is about the Post VETA Measurement. Section

4 discusses the computer mesh models. Section 5 gives the mesh effect correction. And section 6 lists the
final results of the VETA encircled energy.

Figure 1: VXDS Flow Proportional Counter Window. The mesh supporting grid is made of gold wire with

50.8 pm diameter and 529.17/_m pitch.

2. VETA-I ENCIRCLED ENERGY MEASUREMENTS AND WIRE MESH

EFFECT

VETA encircled energy measurements were made at five different X-ray energies, i.e. C-K (0.277 keV),

Cu-L (0.932 keV), AI-K (1.488 keV), Zr-L (2.067 keV) and Mo-L (2.334 keV). The X-rays focused by the
VETA pass through an aperture of radius r, in tile focal plane, and detected by a flow gas proportional



counterplaced25 mm behind the focal plane. There are 10 apertures with diameters of 0.005, 0.01, 0.025,

0.05, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3, 5, 7.5, 10, 20 ram. The aperture 0.005 through 0.5 mm are laser drilled

pinholes on 99.9% pure and 12.5 microns thick gold foil. The 0.75 mm or larger apertures were machine

drilled on aluminum plate with irridite coating. We have taken the scanmng electron microscope pictures

of the laser drilled pinholes. Their actual sizes and shapes are slightly different from a perfect circle with
quoted diameters, which is discussed by another paper in this volume. 4 Each aperture was placed in the

focal plane of the VETA-I and centered on the peak of the VETA Point Spread Function (PSF). The photon

counts, counted by the flow gas proportional counter (also called X-ray Detection Assembly counter or XDA

counter), through each aperture then represents the integral of the PSF out to the radius of that aperture.

The encircled energy is measured by comparing the counting rate to that obtained in an identical flow
counter, the Beam Normalization Detector (BND), of very well known area, exposed to the same incident

beam in the entrance plane of the P1. Depending on the source intensity, the integration time was chosen to

ensure both detectors receiving enough counts so the statistical error is less than 1%. The VETA effective
area is calculated as

XDA Counts (r) × BND area
Effective Area (r) = BND counts

where BND area - 7r cm 2 with an uncertainty of 0.05%.

The flow proportional counter is filled with either 125 tort methane for a low energy line (C-K) or 400

torr P10 gas (10% methane and 90% argon) for lligher energy lines (Cu-L, AI-K, Zr-L and Mo-L). It has
a thin polypropylene window with an opaque wire mesh supporting grid which prevents the window from

breaking under differential pressure. The wire is made of gold with 50.8 pm diameter and the average mesh

period is 529.17 pm (see Figure 1). When the window is uniformly illuminated, which is the case for the
BND counter, the transmission is 81.72% due to the wire mesh effect. But it is not so simple for the XDA

counter. As shown in Figure 2, the X-ray photons from the focal point expand into a ring of about 3 mm
diameter when they strike the counter window, which is located 25 mm behind the focal plane. Depending

Baseline mesh
(2 roll wires on
20 rail centers)

L" behind focal

Figure 2: Counter Window Wire Mesh Effect. The X-ray photons form a ring pattern when they enter the

counter window. Depending on the phase of the mesh grid relative to the photon ring, the X-ray transmission
can vary from 75% to 92%.



WINDOW SCAN MEASUREMENTS

0.600 rnm scan = 9 steps x 0.075 mm stepsize

or = 11 steps x 0.060 man stepslze

Mesh Grid

_s_n

.,11.m

r Z.scan

0.529 ram-

0.529 mm

Figure 3: The planned VETA Encircled Energy Window Scan Measurement. The arrows indicate the Y

and Z positions of the aperture center with respect to that of the mesh grid. The transmission maximum
occurs when the aperture center is at one of the mesh grid intersection, except for the 20 mm aperture, in
which the transmission minimum occurs. The scan maximum occurs when the aperture center crosses one

of the mesh wire, also except for the 20 mm aperture, in which the transmission minimum occurs.

on the phase of the mesh grid relative to the photon ring, tile X-ray transmission can vary from 75% to 92%,
which directly translates into an error of the encircled energy. Obviously we had to take this mesh effect

very seriously in order to fulfill the measurement precision requirements.

To measure the counting rate modulatioa_dqe to the wire mesh and to make appropriate transmission
corrections, the window was scanned in both Y and Z directions with the aperture fixed. Three sources

(Al, C and Zr) and 11 apertures (0.3 through 20 mm) were used for the window scan measurements. The

procedure was to: 1) make a scan in Y direction ; 2) find the location with the highest counts; 3) offset
the counter to this location; 4) make a scan in Z direction. Each scan is a 600/_m span with 9 or 11 steps

(see Figure 3). Integration time is chosen to ensure enough counts (> 10000) for each step. Figure 4 is
the Quick-look data of some typical scans, generated during the VETA test. The mesh modulation effect is

clearly seen. Figure 5 is the Quick-look data for 2 and 10 mm apertures which shows something we could
not understand at that time: the window Z-scans have much higher counts than the Y-scans. Obviously

they were not done as planned because otherwise the highest point of the Y-scan curve should agree with
the middle point of the Z-scan curve. Figure 6 shows all the quick-look window scan data for the AI-K line.

It shows the 20 mm aperture window scan and the Z-scans for the 2 and 10 mm aperture are distinctively

higher than the rest of the window scans. Compared with the wire mesh models (see Section 5), a simple

analysis (we leave this to our reader as a little fun exercise) concludes that all the window scans were not
done as planned. This was caused by a computer error and it complicated the data reduction. In order to

make the mesh correction, we had to fully understand how the window scan measurements were actually

done and the exact geometry of the apertures and counter setup. Therefore we planned the Post VETA
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The Z-scans have much higher counts than Y-scans. It indicates that these window scan measurements were

not done as planned.
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window scans and the Z-scans for the 2 and 10 mm aperture are distinctively higher than the rest of the

window scans.

Measurement which was carried out in March of 1992 at XRCF.

3. POST VETA MEASUREMENTS

Two Post VETA Measurements were made. Tile first one was the mechanical measurement which solely

supported the window mesh effect analysis. The second one was the X-ray measurement which measured the

beam uniformity, filter thickness, detector response etc., in supporting the whole VETA data analysis and

HRMA (High Resolution Mirror Assembly) test planning. In the mechanical measurement we measured: 1)

the mesh grid periodicity; 2) the mesh wire orientation; 3) relative Y and Z positions between the VETA
focal points and the wire mesh as well as the counter window bezel; 4) VETA focal point to wire mesh

distance (along the X axis). Depending upon the region on the window, the mesh periodicity varies between

499/_m to 564 #m. The mesh wires are laid within 0.2 degrees from the horizontal and vertical directions. A

motor log recorded all the motor positions during the VETA test. We used this motor tog to repeat all the

moves and measured the aperture and counter positions. Figure 7 shows the actual positions on the window

mesh where the X-rays enter the window for different scans and apertures. It is seen that the Y-scans and
Z-scans were actually made at different parts of the window. There are actually six locations on the window

where data were taken: window Y-scan, Z-scan and window fixed measurement for 2 and 10 mm apertures;

window Y-scan, Z-scan and window fixed measurement for other apertures. There was a so called Prime-Y

move, which moves the whole XDA assembly in order to reach different parts of the detector, during the
VETA test. We later found this Prime-Y move had a 0.1% error - it was 10O pm short for a 10O mm move

- and also its repeatability was not very good. But our motor log regards every move as accurate as its read
out. Therefore the positions shown in Figure 7 are only good to :t= 20 #m. More accurate window positions
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Figure 7: Window Scan Positions. A result of the Post VETA Measurements. (a) shows the relative posi-
tions of the window bezel (big circle), mesh grid and the aperture center positions where the measurements

were made (little crosses). (b) shows a magnified portion of (a). The measurements were bunched at six

locations. Location (4), (5) and (6) are for 2 and 10 mm apertures. Location (1), (2) and (3) are for the rest
of the apertures. Window fixed measurements were made at locations (1) and (4). They were also for the

planned window scan measurements. But the actual window Y-scan measurements were made at (2) and

(5). The actual window Z-scan measurements were made at (3) and (6).



wereobtainedbyfitting theVETAdatato themeshmodels(seenexttwosections).Becausethewindow
slightlybulgedout underthepressure,theVETAfocalpoint(thecenterof the5 pm aperture was used to

refer to this point) to wire mesh distances were measured at all six positions shown in Figure 7 under 125
and 400 torr differential pressures. The results are in Table 1.

Table 1. VETA Focus to Window Mesh Distance

Source Gas&: Aperture Size
Pressure 0.005-7.5 mm 2 & lOmm 20ram

C Methane/125 Torr 24.940 mm 24.940 mm 29.012 mm

AI,Cu,Mo,Zr 1510/400 Torr 24.703 mm 24.814 mm 28.775 mm

4. WIRE MESH COMPUTER MODELS

Computer models of the window mesh were developed to simulate the X-ray transmission based on

the exact XDA geometry and our knowledge of the VETA. 7 First, ray-trace image files of X-ray on the

counter window were generated by using the OSAC package. The ray-trace included the effects of residual
gravitational distortions, scatterings for different energies, despace due to the uncut glass, apodization, finite

source sizes and their intensity distribution, finite source distance, mirror surface figures, and mirror support

strut. For all five sources and different focuses to mesh distances, there are 14 ray-trace image files generated
and each contains 50000 photons. We then laid each ray-trace image on top of a mesh wire grid model
and calculated the number of photons blocked by the wire grid. The mesh grid model was then moved in

both Y and Z directions with the ray-trace image fixed to simulate the window scan, and transmission was

calculated for each move. Figure 8 shows the ray-trace image of the A1-K source on top of the wire grid for

one fixed position. Figure 9 shows the mesh transmission model for the A1-K source with a 2-dimensional

scan of 81x81 positions. It is seen that the mesh effect is very strong. For 20 mm aperture, the transmission

is the minimum when the center of the aperture is at one of tile intersections of the mesh grid. For other
apertures, the transmission is the maximum in that case. Depending on the counter position, the X-ray

transmission can vary between 75% and 92%. There are 14 such mesh models corresponding to 14 ray-trace
files as mentioned above.

5. WIRE MESH CORRECTIONS

To make the mesh effect correction, we had to first fit the data to the mesh model to find the accurate

Y and Z positions of the window scan. The correction was then made by comparing the percentage of
transmission at these positions in the mesh model to the BND counter mesh transmission. The quick-look

data shown in section 3 provide a preliminary result during and immediately after the VETA test. The

spectrum fitting analysis was done for all the VETA encircled energy data to correct spectral contamination

including bremsstrahlung continuum, pulse pileup, background and deadtime. 6 The spectrum corrected data

were then used to fit with their corresponding mesh models with a minimum ,_2. The initial fit was made

based on the window scan positions measured during the post VETA measurement. The VETA motor log

gives the relative positions between Y-scan and Z-scan for each aperture. More accurate fit was then obtained

by combining the initial fit and the motor tog, This process was like fitting a two dimensional data to the

mesh model, even though the data were only from two one dimensional scans perpendicular to each other.
The data fit the mesh model very well. The reduced X" for each window Y and Z scan pair fit ranges from

0.4 to 1.4 with the average around 1. Figure 10 (a) and (b) show one of the typical fits. The fitting process
located the exact relative positions between the aperture and the window mesh. The XDA transmission rate
at these positions was then calculated using the mesh model. The mesh corrections were finally made by

multiplying the spectrum corrected data with the BND transmission rate (81.72%) and dividing it by the

calculated XDA transmission rate. Figure l0 (c) and {d) show the corrected encircled energy window scan
data. It is seen that the mesh modulation effect is removed.
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Pigure 9: Window Mesh Transmission Models. A1-K source. (a) is the model for 0.005 to 7.5 mm apertures,
in which a maximum transmission occurs when the Y-Z coordinates of the aperture center is at a mesh wire

intersection. (b) is the model for 20 mm aperture, in which a minimum transmission occurs when the Y-Z

coordinates of the aperture center is at a mesh wire intersection. Depending on the counter position, the

X-ray transmission can vary between 75% and 92%.
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The window scan measurement only covered three sources (A1, C and Zr) and 11 apertures (0.3 mm

through 20 mm). Before the window scan measurements, we did the window fixed measurement for all

five sources and 16 apertures (0.005 through 20 mm). Instead of scanning the counter, only one fixed

counter position was used for each aperture. In order to make mesh effect corrections for the window fixed
measurements, we had to know their exact counter positions. We do have a motor log which gives the

relative counter positions between all the window scan and window fixed measurements. However, there

were prime-Y moves during the measurement which make the motor log not very reliable. But we did the

beam centering for apertures ranging from 0.005 mm to 0.3 mm. The 0.3 mm aperture was the only one used

for both window scan and beam centering thus it linked the window fixed data and the window scan data.
There was no or very small Prime-Y move between 0.005 and 0.3 mm aperture window fixed measurements.

With this information, we were able to accurately locate the counter positions for apertures from 0.005
mm to 0.3 mm window fixed measurements and hence to make their mesh effect corrections. For the final

results, we use the window scan data for 0.3 to 20 mm apertures and window fixed data for 0.005 to 0.1 mm

apertures. Because there was no window scan measurement for Cu and Mo sources, we could only rely on
our motor log to make some rough mesh corrections for these two sources. Therefore the results for these

two sources have bigger errors.

6. FINAL RESULTS OF THE VETA-I ENCIRCLED ENERGY

Table 2 gives the final results and their errors for the VETA encircled energy. The final errors are less

Table 2. VETA-I Encircled Energy units: cm 2

Aperture

size (mm)

0.005

0.010

0.025

0.050

0.100

....0:3d0
0.750

0.500

1.000

1.500

2.000

3.000

5.000

7.500

10.000

20.000

Total Error

Error due to

Mesh Correction

C-K

0.277 keY

4.375

8.839

31.651

65.126

123.797

214.293

217.538

220.655

217.422

219.620

217.813

222.311

220.197

221.697

219.958

Cu-L

0.932 keV

3.362

8.471

24.662

49.312

97.395

167.884

181.863

186.698

179.857

180.507

178.935

186.224

174.568

190.402

185.656

X-ray lines
AI-K

1.488 keV

2.959

7.498

24.302

49.001

94.425

165.682

166.690

168.720

169.617

170.602

170.995

i73.035

173.674

174.769

174.259

Zr-L

2.067 keV

0.516

1.352

3.636

7.270

14.521
2'4.939

25.664

26.085

26.207

26.536

27.119

26.982

27.445

27.691

27.804
28.7o6

Mo-L

2.334 keV

0.155

0.349

0.954

2.129

4.271

7.784

8.011

7.987

8.164

8.233

8.374

8.999

9.040

9.272

8.772

223.037 182.731 179.007 8.497

0.562% 0.612% 0.795%

0.422% 0.470% 0.772%

than 4- 0.8% for AI, C and Zr sources, which exceeded the requirements (4- 2%) by a factor of 2.5. Figures ll,

12 and 13 are the plots of the encircled energy vs. the aperture sizes before and after the mesh corrections
for Al, C and Zr sources. These results were then used to compare with the expected values to get the

VETA point spread functions and the mirror surface figures. 7 they were also used to obtain the VETA total

effective area and mirror reflectivity, s
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ABSTRACT

Measurements of the VETA encircled energies have been performed at 5 energies within 16 radii ranging from
0.05 to 200 arcseconds. We report here on the analysis of the accuracy of those measurements. A common "error
tree" structure applies, and we present representative numbers for the larger terms. At 0.277, 1.5, and 2.07 keV,
and for radii of 3 arcsec mad larger, our measurements have estimated 1 sigma errors of 0.6 to 1.5 percent. Effects
of measurement statistics and of the VETA test mount limit the accuracy at smaller angles, and modulation by the

counter window support structure together with the imperfect position repeatability limit the accuracy for the 0.93
and 2.3 keV energies. We expect to mitigate these limitations when calibrating the complete AXAF flight mirror

assembly.

I.INTRODUCTION: CALIBRATION OF AXAF

The Advanced X-rayAstrophysicsFacility(AXAF) willbe a long-livedinternationalobservatoryforperforming

highresolutionimagingand spectroscopicstudiesinthe 0.1to I0keV range.The scientificobjectivesofAXAF are

toinvestigatethenatureofcelestialobjects,thephysicsoffundamentalprocessesin theuniverse,and thehistory
and evolutionoftheuniverse.To fullyexploitthe informationobtainedrequiresthatwe know theresponseofthe

X-raysmirrorstoa calibrationaccuracyoforderI%.

We have been investigating techniques for calibrating the flight mirrors in conjunction with previous measurements

proving the technology of mirror fabrication. We have previously reported results from measurements of a Technology
Mirror Assembly (TMA; Schwartz et al. 1986; VanSpeybroeck et al. 1986; Wyman et al. 1986) and of an improved
version of this assembly designated TMA-II, (VanSpeybr.oeck et al. 1989). The Verification Engineering Test Article

(VETA) consisted of the outermost pair of the nested set of AXAF mirrors, comprising the actual flight mirror.
Previous results have been reported in Kellogg et al (1991b), in internal SAO reports (Brissenden et al. 1991; 1992),

and appear in several papers in this volume. The present paper addresses X-ray measurements of the VETA from
the point of view of how accurate a calibration was performed.

Our objective for the VETA calibration was 5% accuracy for the effective area and 2% accuracy for the encircled
energy. These were unusual and ambitious goals, which were largely achieved. This requirement forced much
attention to details, of which some were unusual and unanticipated (cf., Chartas et al. 1992; Zhao et al. 1992a.b).

The next section discusses the philosophy and objectives of calibration in more detail. In general, the error from
photon counting statistics can be made less than 1% since it is usually feasible to acquire more than 104 counts, so
that ability to understand the systematic effects determines the final precision. Section 3 presents the principles of
the calibration measurements. Our key technique is to measure the ratio of counts in nominally identical detectors,

so that many effects, (e.g., variability of the X-ray generator, dead time in the common electronics), cancel to first
order. Section 4 presents our detailed analysis of how accurate are the VETA calibration measurements. Papers
in this volume by Hughes et al. (1992) and Kellogg et al. (1992) address how well we can use this information to
deduce the true properties of the VETA.

_.CALIBRATION OBJECTIVES

To understand the rationale of the calibration program, we must clearly define the purposes of calibration. In

simplest form, a "calibration" is a measurement that can stand alone to provide definitive numerical conversion of
on-orbit data into physical quantities. An approximation to this situation might be the conversion of a counting rate
measured in a ten arcsec circle in the focal plane at some off-axis angle, into a broad band flux. The calibration



process might have allowed us to determine a single "average area" number to divide into the measured counting
rate.

In X-ray astronomy the flux conversion actually depends on the form of the incident spectrum, and calibration

is a much more complex process. It is clearly not possible to reproduce on the ground every possible measurement
that could he made on-orbit. That would require sampling the product of all possible energies, times a range in each

of two off-axis angles, times a range of focal plane locations, times all possible image sizes of interest. The way the

actual flight data is analyzed is by construction of semi-analytical models of the telescope and detectors, and using

these models to interpolate and extrapolate continuously to the exact parameter values of any given observation.

Thus the second major purpose of a calibration is to verify that the models used are valid.

The third purpose of the calibration is to overdetermine the numerical parameters appearing in the models. This
allows determination of best-fit values, error estimates, and allowed ranges of parameters, to any given confidence

level.

In cases where the models prove inadequate (e.g., unacceptable fits to the data for any values of the free parame-

ters), the calibration process must provide sufficient data to refine the models. Examples of such refinement might be

measuring on a finer grid of data points for interpolation, or replacing the usual assumption of azimuthal symmetry

with a detailed functional dependence. '"

The most generalcalibrationmodel of a telescopeisthe point response area:

dA(E, O, O, _/, z, z, i) (1)

where dA/(d9dz) is the infinitesimal effective absolute area per unit solid angle in the image plane, to a broad parallel

beam of X-rays of energy E, incident at polar angle theta and azimuthal angle phi to the telescope optical axis, and

imaged at the angular position y, z in a plane parallel to the on-axis Ganssian focal plane but displaced by a distance

x. The two polarization states are indexed by i. X-ray reflectivity depends only slightly on the polarization state,
and we do not consider this further for the VETA calibration. For the flight mirror, the significance of polarization

correction will be investigated.

....... fraction ......

Operationally, one of the most important functions is the absolute encircled energy area,

£A,(E, O, d, z) = dA d_ dz (2)

Henceforth we will specialize to the case of the VETA measurements, which were made on-_is, thet_-O, phi

indeterminate, and in focus, z = O. Dropping O, the effective area is defined as

x. AE)- A,=,/2(E,0,0). (3)

Other important quantitiesare the dimensionlesspoint response function,f - dA/AeH, and the encircledenergy

In thispaper we willdeal with the encircledenergy area,as measured within the availableapertures(Podgorski

et al. 1992). Effectivearea willbe consideredas a limitingcase ofencircledenergy,and treatedin more detailby

Kellogg et al.(1992).

3. pRINCIPLES OF THE VETA CALIBRATION MEASUREMENTS

Figure 1 illustrates the fundamental principle of our calibration. A broad, uniform, parallel beam of X-rays
of monochromatic energy E illuminates both the VETA X-ray mirror and a beam normalization detector (BND)

immediately adjacent to the VETA. The BND is provided with a large mechanical aperture of a precisely known

area, A1. In the focal plane, X,rays which pass through a precisely measured pinhol_ 0f angui .at radius _r, illuminate

a focal plane X-ray detector assembly (XDA) which is n0n_i'nal_ly identical to the BND assembly. These detectors

are thin window, gas proportional counters, with a gas flow system to replenish the gas which leaks out through



w

the windows. Analog pulses resulting from X-ray interactions in the BND and focal plane detectors are processed

through nominally identical electronics, and are presented to a common analog to digital converter, the MultiChannel

Analyzer (MCA), resulting in numbers Nx and N2 counts, respectively. We then can express the desired encircled

energy area as
A, = AI(N2/N1). (4)
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Figure 1. Cartoon of the concept of calibration of an X-ray mirror. The VETA reflects X-rays to the focal
plane. The comparison of focal plane counts to counts in an identical detector adjacent to the VETA.

provides the required information. The x-ray focus area is enlarged to the lower right. (Figure is not to

scale.)

The remaining task of this paper is to construct the error analysis tree, accounting for the extent to which the

actual experiment deviates from the ab0Ye id_eMizat!on. In this paper we only deal with the errors affecting the

accuracy of the measurement. Specifically, the fact that the X-rays are diverging from a source of finite size at finite
distance must be considered in converting from our measured parameters to the true VETA model. Since the VETA

as such will not be used as a flight instrument, we do not attempt the on-orbit performance estimate in this paper

(hut cf., Freeman et al. 1992; Hughes et al. 1992;) For the error analysis tree presented here we take a data oriented

approach, in contrast to the hardware oriented approach presented by Kellogg et al. (1991a) in discussing the error

budget tree, prior to performing the measurements.

We can see some potential difficulties by reference to Figure 1. We must ask to what extent is the X-ray beam

uniform, so that the mean flux over the VETA is identical to that over the A1 aperture. Zhao et al. (1992) discussed

the correction due to the fact that the X-rays form a ring on the focal plane detector , whereas they uniformly



illuminatethe BND detector.Finally,the X-ray beam consistsofbroad bremsstrahlung continuum, underlying the

idealizedemissionlinespectrum. Chartas etal.(1992) discussthe processofextractingthose counts attributableto

the lineemission.

4. ANALYSIS OF T_[E (_ALIBRATION ACCURACY

4.1 Top Level EncircledEner_ Area

Our measurements employed 5 different energies, and 16 different pinhole sizes. Rather than present 80 detailed

error analyses leading to the precise uncertainty for each measurement, we want to emphasize the error analysis
structure that applies to all measurements. Thus in the discussion below we may quote a range of error values, or

nominal values which apply very closely, but not necessarily precisely, to many of the measurements.

ENCIRCLED ENERGY AREA, ERROR ANALYSIS
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Figure 2.Top levelerroranalysis.The finalerrorinENCIRCLED ENERGY AREA isshown asthe root-

sum-square of the threeterms on the righthand sideofequation (4),where Nl are the BND COUNTS.

and N2 ar_.the FOCAL PLANE COUNTS. The erroranalysisfor NI isshown infigure3,and the error

analysisfor N_ isshown in figure9.

Figure 2 shows the top levelof the erroranalysistree,based on equation (4). We intend that the three lower

terms be combined as a root-sum-squares,to give the net errorin the upper box. Thus we attempt to analyze

systematicerrorswhich affectboth detectorsin only one place:as ifthe BND were correctand the focalplane had

a relativeerror,(or vice versa).The BND aperture isa 20 mm diameter hole,drilledin I/8th inch aluminum, so

that itsarea is3.142 cm 2.The diameter ismeasured with a precisionJo block to an estimated accuracy of 0.025_

Effectsdue to vignettingby the finitethicknessofthe aperture,and to penetrationofthe A] plateby X-rays ofthe

energiespresentin the bremsstrahlung continuum, are estimated at lessthan 10-s.

A more accurate description is given by equation (5):

Ap(E) = AI * (B1/BVETA) * (N_/t2)/(N_/tl), (5)

which considers the ratio of the true counting rates, with the live time ratio (tl/t2) and the ratio of flux on the BND,

BI, to flux on the VETA, BVETA, both taken as nominally 1. The primes denote the counts from the X-ray lines,

o-



rather than the total counts in the detectors. These counts, N_ and N_. are determined from fits to the proportional

counter pulse height spectra, a.s discussed by Chartas et al. (1992).
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Figure 3. Analysis of the error in the BND COUNTS. The top box represents the net error in N1, and
the lower left box the error in determining N_. The error in N_ is analyzed in figure 8. Data on the
RELATIVE LIVE TIME is shown in figure 4, and data relative to the BEAM UNIFORMITY ERROR

is shown in figure 5.

Figure 3 shows the top level error analysis for the idealized BND counts, N_, and Figure 9 for the idealized focal

plane counts, N2.

4.2ErrorAnalysisofthe Beam NormalizationDetectorCounts.

To estimate the live time in each detector chain, we insert a pulse generator of known rate into a portion of the

pulse height spectrum where we do not expect significant X-ray counts. Figure 4 plots the dead time determined in
this manner for the BND and focal plane counts, separately, as a function of the total counting rate of the MCA. We
also plot the dead time measurement which is generated internally by the MCA. We attribute the small differences
among these curves, and the fact that they do not have zero intercept, as due to low level noise pulses which do not
register as MCA counts, and vary due to different noise levels in different detectors. Our nominal operating point is
about 5000 s -1, giving a relative error of 0.1%. We analyze this error as applying to the incident flux determined by
the BND.

We find no evidence for spatial irregularity of the X-ray beam which would cause the BND to sample a flux different
from the VETA. Unfortunately we were not able to do the extensive experimentation necessary to provide stringent
limits. Ideally, we would scan one BND in space over the area in front of the VETA, and compare its counting rate to
an identical fixed BND detector in order to separate effects of time variability in the X-ray generator. This is planned

to be carried out prior to and subsequent to calibration of the actual flight mirrors. At present we have some limited
information obtained by scanning the focal plane detector in the broad beam at the focal plane, after the VETA had
been removed. Figure 5 shows the ratio of the focal plane (scanning) to BND (fixed) total counts, vs. the position
of the focal plane detector over a 600 mm scan in the horizontal direction, with the AI source. If this scan were a
fair sample of the VETA aperture, we would quote the maximum allowed rms of the ratio about its mean value, and
after root-sum-square subtraction of the counting rate statistics, as the limit to the beam non-uniformity. Instead,
to attempt to be more conservative, we quote the total 1.5% change obtained by an eyeball straight line fit to the
data. Although this was a horizontal scan, we note that the BND is displaced vertically from the telescope axis. We



may expect that the beam non-uniformity depends on the filter used with each target in the X-ray generator, and

thus is specific to each X-ray energy.

o
0

Figure 4. Percent dead time is plotted vs total (i.e., BND plus XDA) counting rate. The dead time is

estimated in three different ways: MCA designates the expected dead time as generated by the MCA

electronics; BND designates dead time estimated by a pulse generator of known rate through the BND

electronics chain, and XDA designates dead time estimated by the same pulse generator through the
XDA electronics chain.
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Figure 5. Beam uniformity scan for the AI 1.5 keV x-rays. The ratio of the XDA to BND detector is

plotted vs. the horizontal (Y-axis) position of the XDA detector in the focal plane.

An example of the expected shape of the X-ray spectrum incident on the BND and VETA is shown in Figure

6. For this molybdenum target, the continuous histogram shows the bremsstrahlung continuum extending up to 17

keV, corresponding to the setting of the generator high voltage. The notch above 2.3 keV is due to using a Mo filter
to reduce this continuum. Mo has a complex of L-shell lines around 2.3 keV, with the five strongest spread over

the region 2 to 2.5 keV. In all our fitting, we treat the multiple K or L shell lines with fixed ratios as tabulated
in Salem et al. 1974, and treat the total line flux resulting in the fits as being at the weighted mean energy. The

bremsstrahlung continuum shape is taken to be the thick target result, _a(E,,,== - E)/E, where n is the number

of bremsstrahlung x-rays at energy E, and E,,_== is the electron acceleration voltage.
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Figure6. Deduced shape ofthe spectrum from the molybdenum target,incidenton the BND detector.We
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Figure 7. Response of the BND pulse height analysis, dots, compared with that expected by fitting the

counter response to the input model of figure 6. The peak at channel ,-,100 is the response to all the

L-shell lines, smeared out by the detector resolution. The lower solid line is the fit to the bremsstrahlung

continuum, and the upper continuous line is the sum of the line and continuum component. The data

analysis depends on the fit within the pair of vertical dashed lines designated ROIB0 and ROIB1 (see

Chartas et al., 1992). (The measured counts pile up around our upper threshold, at about channel 450.)



Figure7 is a typical pulse height spectrum observed in the BND for Mo X-rays. The key feature of the proportional

counter response is that its modest energy resolution greatly broadens and blends all the X-ray lines, and also smooths
out the sharp features due to the filter. In our data analysis, we subtract non-X-ray background, and perform fits to

determine the strength of the lines, the continuum normalization, the energy resolution parameter using a Prescott

response function, and the peak channel of the X-ray lines. As discussed by Chartas et al. (1992), we take the actual

counts in the region of interest, shown as the vertical dashed lines, and subtract the number of counts determined
by the fit to the bremsstrahlung continuum.

Figure 8 shows the analysis of the precision of extracting the X-ray line counts from the BND according to the

process just described. The number of total counts in the region of interest is typically a few thousand to less than
100,000, so we show a 0.4 to 1.5 percent error in the statistics of the line peak counts. Generally, the X-ray genera_r

flux is observed to be stable in time over a few minutes to a few hours, so we average from 2 to 20 different BND

spectra in order to obtain one single fit with which to compare a series of focal plane measurements. This reduces

the net error to the 0.1 to 1% range.

PRECISION OF BND FIT, ERROR A_ALYSIS
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Figure 8. Analysis of the uncertainty in N_, the fit to the number of counts from the X-ray ll,e as

measured in the BND detector. The error is dominated by the Poisson fluctuations in the number of

counts in the line peak and in the continuum. The systematic errors of the fit are all attributed to the

XDA counts, since it is only errors in the ratio of XDA to BND which affect the encircled energy results.

The number of counts inferred as the continuum contribution ranges from ,,-600 to 10,000, so its flux is approx-
imately determined to 1 to 4% of its own value. When averaged, and expressed as a fraction of the line flux, the

estimated error ranges from 0.1 to 0.5%.

In the figure, we include a term to allow for errors which result from the systematics of the lea.st-squares-fit process.

These arise due to parameters which are kept fixed, e.g., the X-ray generator high voltage or the proportional counter
window thickness, for which the value assumed may be incorrect. For analysis purposes we will assess all these effects

when we consider the focal plane detector errors, since it is only the error in the ratio of counts that a_Tects encircled

energy.



We measure non-X-ray background when the gate valve to the X-ray generator is closed. We typically integrate

long enough to acquire 1000 counts, so that the background flux is known to ,-,3%. The BND counting rates are

always 100 times higher than background, so that this gives only 0.03% effect on the fitted counts.

We assume allother effectsare each lessthan 0.1%, and we do not discussthem furthersincethey contribute

negligiblyto the root-sum-square error.An example isthe exact choiceof the "regionof interest"boundaries, as

shown by Chartas et al.1992 (theirFigure 9).

4.3 Error Analysis ofthe Focal Plane Detector Counts.

Figure 9 presents the top level analysis of the focal plane detector counts. The relative live time box is repeated

here for completeness, but has zero entry since we formally included its effects in the BND rate.

FOCAL PLANE COUNTS, ERROR ANALYSIS
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Figure 9. The erroranalysisforN2, the idealizednumber ofcounts in the focalplane detector.PRECI-

SION OF FIT errorisshown in figure12. The FOCAL PLANE FLUX errorterm would enter in the

discussionof the true absoluteeffectivearea,but isshown blank here. MESH EFFECTS are discussed

in Zhao et al.(1992).

The "counter response" term is intended to include intrinsic differences in the focal plane detector relative to the

BND detector, (omitting terms due to "systematics of fit" discussed in figure 12). The primary effect is due to the

window support mesh, as discussed in detail by Zhao etal. (1992). For the C-K (0.277 keV), AI-K (1.49 keV), and

Zr-L (2.07 keV) lines the estimated residual uncertainty after performing the correction is 0.5%. For the Cu-L (0.93

keV), and Mo-L (2.3 keV) lines we did not scan the counter windows behind the pinholes as is necessary to perform
the correction. In this case we assume the :t:8% full range of the possible correction is a uniform distribution (for

which the rms is 1/v/_), and therefore take 16%/v/_ = 4.4% as the error.

The term "counter relative effects" is intended to account for unexpected ways in which the BND and focal plane

detectors differed. (Expected possible differences are analyzed in the "systematics of fit" term in figure 12.) It was

planned that we would correct for these unexpected differences by simply swapping the positions of the two counters
and comparing the ratios of counts in the swapped vs. normal positions. Unfortunately, the window on the BND



counter was broken before this swap could be performed. The transparency of the actual window is an important

determinant of the proportional counter response, so it is not valid to perform the swap with a replaced window and

use it to correct the VETA data. Instead, we studied the ratios with the counters swapped for the replaced window,

and interpret the apparent difference as an upper limit to the error. In the case of AI-K X-rays the two ratios, for

the raw counting rate data, were 1.037 and 1.039, while for Cu-L X- rays the ratios were 1.063 and 1.042. We thus

show 0.2 to 2 percent as a upper limit to this error term. We treat the actual error as zero. From this data, we

estimate that for the flight mirror we will be able t0 perform this correction to within a residual 0.2% error.

In figure 10 we show the estimated X-ray generator spectrum from the AI target. We see the AI-K lines (solid),

and the bremsstrahlung continuum (dotted) modified by the AI filter. The dot-dash line indicates the expected

spectral shape incident on the focal plane. Because the VETA mirror response cuts off sharply above 2 keV, the
continuum spectrum is significantly modified. Figure 11 shows the pulse height spectrum as recorded in the focal

plane proportional counter. We notice the continuum contribution is reduced, relative to the BND spectra. We
also see a broad peak at about twice the AI-K energy. This is due to pile up of AI-K X-rays, since we are typically

counting at several thousand per second. Although prominent on the graph, it is less than 1% of the AI line counts,
and it is known to within a few percent of its own estimated value (from figure 5 of Chartas et al. 1992), so that it

gives less than a few hundredths percent error to the focaI plane counts.
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Figure 10. Deduced shape of the spectrum from the aluminum target, as incident on the VETA (dot-

ted line) and incident on the XDA detector after reflection by the mirror (dash-dot line). We see the

bremsstrahlung continuum, and the K-shell lines centered on 1.49 keV. The intensity is in arbitrary units.
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channel 390.)



Figure12analyzes the precision of fitting to the line counts in the focal plane detector. The data analysis proceeds

by taking all the measured counts within the region of interest indicated by the vertical lines, subtracting the fit
to the continuum, subtracting that part of the fit to the pile up peak which falls within the region of interest, and

adding twice the total number of counts fit to the entire pile up peak, since these pile up events are each two 1.49

keV X-rays.
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Figure 12. Error analysis for N_, the fit to the number of counts in the X-ray line. The COUNTS IN
LINE PEAK and ESTIMATED CONTINUUM boxes are the Poisson statistical errors. See text for

SYSTEMATICS OF FIT errors.

Counts in the line peak are typically 10_ to l0 s, giving a 0.1 to 0.3 percent error. The pile-up correction itself is

about 1 to 3%, known to an accuracy of about 1%. The background is known to about 3%, but is less than 0.001

of the line counts. The significant new term in this error tree is that due to the systematics of the fit. The three
dominant terms are due to the counter window thickness, the ratio of the line to continuum counts in the incident

X-ray spectrum, and the high voltage setting of the X-ray generator. Each of these is held as a fixed, given parameter

during the fit to determine the number of counts in the X-ray line.

We perform a sensitivity analysis to assess the effects of those terms. Figure 13 shows the effect of varying the

proportional counter window thickness from its nominal value of 1.7-1- 0.2 microns. The top panel for each energy

(13a for 1.49 keV, 13b for 0.277 keV), shows how the number of fitted counts changes as a function of fLxJng different

window thickness parameters. The bottom panel shows the percentage error. The effect is greatest at the lowest

energy, C-K where the window is mo6t opaque. -
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Figure 14 shows the effectofvarying the assumed value ofthe high voltagesettingofthe X-ray generator,on the

fittedcounts from Al. Within the assumed I% toleranceon the generatorsetting,the deduced countschange by less

than 0.06%.

itl

x

106 , , f , ,
2.260x •

I( ]1(

2.250x106

2.240x106

2.230x106

2.220x106

t
r._
"o

I)

I E

)EE

.... 1 .... l .... i .... l .... i i I i

6.5 7.0 V.5 8.0 0.5 9'.d 0.5
X-ray source high voltage ( kV

1.0 3- .......

0.8 --

0.6 -- ]_

0.4-- l(_ _

0.2:- I( _(

0.0 ..............
-20 -I0 0 I0 20

Percent difference of high voltage from nomlnsl value

Figure 14. Systematic change of the deduced line counts for AI-K X-rays vs. the true high voltage setting

of the X-ray generator. The assumed accuracy of the high voltage setting is 1%.

In fittingthe focalplane counts,we assume that the incidentX-ray lineto bremsstrahlung continuum ratiois

the same as determined from the fitto the BND data, and modified subsequently by the mirror reflectivity.Figure

15 shows how the linestrength and continuum strength parameters are independently fittedto the BND data. The "

range ofvariationofthe ratioistaken from the extremes on the 95% confidencecontour,and appliedinfigure16 to

the analysisof the sensitivityof the AI counts,resultingin a 0.2% error. ..
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from the BND data for the AI target. We take the extreme range of variation of the ratio of line to

continuum flux (about 5%), Along the 95% confidence contour, to estimate the uncertainty of the focal

plane counts due to this systematic error.
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4.4 Summary

Figure 17 summarizes the error estimates for the 3 most reliable energies, and for pinholes of diameter 3 arcsec _.

and larger. The proportional counters could not be centered at the same precise position behind the pinholes of
radius 20 and 100 arcsec as for the other pinholes, and this may be reflected in a slightly larger error for some of

those data points. Within the internal accuracy of the estimates of the error of each point, the errors are probably

consistent with the mean for all pinhole sizes of each given energy: 1.07% for 0.277 keY, 0.75% for 1.49 keV, and
0.89% for 2.07 keV, It is _nable that the errors would be the same, since this range of pinhole radii all contain

greater than 80% of the encircled energy.
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constant errorof 1.07% at 0.277 keV, 0.75% at 1.5keV, and 0.89% at 2.07keV.

Assuming the error for each energy is constant, independent of pinhole size, we use the rms scatter of the 11

data points to calculate the precision to which we have estimated the mean error at each energy. We find 0.35% for

0.277 keV, 0.24% for 1.49 keV, and 0.20% for 2.07 keV, as the uncertainty in how well we know the errors at those
energies. This justifies quantitatively our ignoring some 0f_the errors of magnitude less than 0.1%.

The precision of making VETA measurements makes us optimistic that we can achieve our goal of predicting the

on-orbit AXAF telescope performance to a precision of order 1%. The correction of ground calibration data to on-orbit

prediction also depends on the accuracy of the models of how the telescope will distort in the presence of gravity. This

uncertainty is expected to be of order 1% itself, therefore we desire to improve the ground measurements by another
factor of ,,,2, but will encounter diminishing returns for further improvement beyond that point. Understanding

the counter effects of window thickness and mesh shadowing, and obtaining increased characterization of the X-ray

spectrum produced by the generator, offer significant error reduction. In addition, we know that for the VETA test

we were subject to systematic errors due to X-ray beam spatial irregularities and systematic counter differences.

Direct measurement and correction for these effects is planned for the AXAF flight mirror calibration.
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ABSTRACT

Initial core scan data of the VETA-1 x-ray mirror proved disappointing, showing considerable

unpredicted image structure and poor measured FWHM. 2-D core scans were performed, providing

important insight into the nature of the distortion. Image de,convolutions using a raytraced model PSF

was performed successfully to reinforce our conclusion regarding the origin of the astigmatism. A

mechanical correction was made to the optical structure, and the mirror was tested successfully (FWHM

0.22 arcsec) as a result.

1. INTRODUCTION

The Verification Engineering Test Article - 1 (VETA-1) was a subset of the High Resolution Mirror

Assembly (HRMA), the AXAF flight optics. It consisted of the outer mirror pair (P1/H1) in the

polished but uncut and uncoated state. The goal of the VETA-1 test was to demonstrate the feasability

of polishing grazing incidence x-ray optics to the level required by the stated AXAF mission

requirements. The Congressionally-mandated milestone was a FWHM of 0.5 arcsec for the optic, to be

reported by mid-September. The VETA-1 and its associated test hardware were placed in the X-ray

Calibration Facility (XRCF) at NASA's Marshall Space Flight Center (MSFC) during the last weeks of

August, 1991. Pumpdown of the chamber began on the evening of Friday, Aug. 30. It was found that

2-3 days were required to achieve thermal stabilization at vacuum before running critical tests. Using

the V'ETA X-ray Detection System (VXDS) and a quadrant shutter placed behind the mirror, relative

alignment of the opical elements was performed, first using the VXDS imaging detector, and then the

VXDS proportional counters and apertures. By Monday, Sept. 2, the alignment and focus adjustments

were complete, and we began detailed pinhole scan measurements of the VETA-I "image.

Initial one-dimensional (l-D) core scans through the image center at the best RMS focus showed a

marked bimodal shape in the intensity distribution (Fig. 1). Even after many 1-D scans, the unexpected

shape and large variation of measured FWHM with scan position and direction did not yield the needed

understanding of the image, instead indicating significant two-dimensional (2-D) structure. In addition,

the measured FWHM was not sufficiently better than 0.5 arcsec to avoid concerns of measurement
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Figure i. One-Dimensional Core Scan (Sept. 2, 1991)

error. It was determined that to provide a better understanding of the image, it was necessary to perform

a 2-D raster scan of the entire image core. Weighing image detail against test time, a 19 by 19 raster

pattern using the 10 l_m pinhole was chosen, producing a sampled image of the inner 4 arcsec core of

the point response function (PRF). _ _

coaEsc2. _IAL 2-D ANS : -

The first complete 2-D scan (ID: 10579) of the image, taken 6 days into the test (Sept. 5), is shown in

Fig. 2, in (a) as an isometric intensity plot, and (b) as isointensity contours. This pattern of isometric

view followed by contours will be used throughout for image display. The 19 by 19 data were

resampled in the following images by 4 in each axis for Visualization. An aluminum anode target,

which produces characteristic line radiation at approximately 1.488 keV, and the flow proportional

counter (FPC) were used. Note that the intensity corresponds the the number of counts accumulated

from the FPC spectra in an operator defined region-of-interest (ROD. No corrections were made for

deadtime, since the deadtime was dominated by the Beam Normalization Detector (BND) count rate,

making the relative deadtime correction over the image only of order a few percent. Pulse pile-up
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corrections were also ignored for these analyses, but are expected to be of order a few percent, since the

source intensity was controlled to limit the maximum count rate.

The image showed a significant "cross" structure. The alignment of the cross with the gravity vector

provided an indication of the origin of the distortion (the y-axis of the images shown [labelled Z] is the

anti-gravity direction). Although it was known that gravity produced ovalization of the optics, no

raytrace predictions of the most recent Kodak finite element model of the optics in the test configuration

had been performed by SAO. Work began immediately to perform these analyses. In addition, we

compared the focal position measured using only the top and bottom mirror quadrants to that of only the

left and right, and found them to differ by approximately 600 I.tm.

3. MODEL POINT SPREAD FUNCTION

A NASTRAN Finite Element Analysis (FEA) model of the VETA-I in the test configuration was

obtained by SAO from Eastman Kodak, the load in this case being the body forces due to gravity. The

resultant predicted distortion, after removal of the rigid body effects, was primarily ovalization with a

magnitude of 4.95 I_m (zero to peak) for the paraboloid (P1) and 3.43 _tm for the hyperboloid. SAO

produced an independent ANSYS model, with predicted values within 20% of the EKC model. Using

SAO-developed software and OSAC, a raytrace code developed by Perkin-Elmer (P. Glenn et. al.), the
FEA model data was fit with Legendre-Fourier polynomials and raytraced. Included in the raytrace

model and the subsequent post-processing were the following effects:

1. Finite Source Distance (518.16 m)

2. Finite Source Size (.22 arcsec dia.)

3. P 1-H 1 Despace (109.03 mm)

4. Calculated Gravitational Distortion (above)

5. Zerodur Reflectivity at 1.488 keV

6. AAR errors (RMS = 0.098 arcsec, from HDOS)

7. Circumfrential slope errors: 6.446 ttrad (P1) and 9.745 larad (HI)

8. Sag errors: 1585 ,_ (PI) and 447 ,_ (HI)

9. Axial slope errors:

a. Low frequency gaussian core: 0.158 arcsec

b. Mid-frequency PSD term: 25/_ (18 mm correlation length)

c. Upper Mid-frequency PSD term: 10 ,_ (0.35 mm correlation length)

High frequency PSD term: 7 _ (0.018 mm correlation length)d°

The first four will be referred to as 'Facility Effects': Inclusion of just these terms is equivalent to

assuming a perfect mirror in the test configuration. No residual misalignment of P1 to the X-ray

Calibration Facility (XRCF) or P1 to H1 was assumed. Excellent relativ e positional stability of the

source, optics, and detectors was realized based on inspectipnof theMotionDetection System (MDS)

data. For this reason, we decided to ignore the effects of vibration in the simulation. Finally, the focal

plane ray file was sampled to simulate the actual 10 circular pinhole scan.



The results are shown in Fig. 3 (a) and (b), exhibiting good qualitative agreement with the measured

image. An algorithm was created to perform a simple image subtraction by scaling the simulation to the

peak of the measured image, then aligning them for minimum RMS difference. This resulted in an

RMS residual of 3.7%, a peak residual of 33.5%, and a correlation coefficient of 0.961. These data and

the measured focus difference pointed more strongly to the lg ovalization as the source of the image

distortion, although work continued to determine if there were reasonable alternate hypotheses. At this

point, engineering personnel from the Eastman Kodak Co. (EKC), the designers of the mirror support

structure, began to consider possible ways to correct the problem. SAO, TRW and MSFC staff desired

even more concrete evidence that this was indeed the cause, since the solution would most likely

involve breaking vacuum, making mechanical changes to the VETA-1 assembly, and another

pumpdown. With only days left before the FWHM needed to be reported, such a significant loss of test

time could only be contemplated if the confidence that it would correct the problem was very high.

4. DECONVOLUTION AND SUPPORTING DATA

Given that the fit to of the model to the data was reasonable, deconvolution of the facility effects from

the raw data was attempted. The assumption was made that the superposition of the facility effects (F),

such as the gravitational distortion or the finite source distance (see above), and the "true" imaging

performance of P1/H1 (P) could be represented as a two-dimensional convolution to yield the test data

(D):

0o

D =F ®P -J._ F (R-r )P (r )dr.

The ultimate aim of the restoration was to restore the 'true' imaging performance of P1/H1, ie. remove

the 'facility effects'.

The general approach entailed resampling the 10 gm pinhole 19x19 point raster scan image onto 1 gm x

1 gm pixels, to yield D. The convolution kernel F was defined by running a raytrace of a perfect mirror

(i.e., without AAR, circumferential slope, sag, or axial slope errors) in the test configuration, including

only the facility effects as enumerated above. This was output as a FITS image with 1 p.m x 1 gm

pixels. This image is shown in Figure 4. Two standard techniques for deconvolution were then used:
Wiener filter deconvolution and a nonlinear recursive restoration scheme described by Richardson and

for astronomical use by Lucy [11[2]. Note that both of these deconvolution techniques are available under

IRAF (package: stsdas.playpen). The Richardson-Lucy (R-L) technique has been heavily employed for

deconvolution of HST images [31.

Wiener filter deconvolution is a simple Fourier quotient technique which uses estimates of the noise and

signal power spectrum (PS) to obtain an optimally-filtered result. In our application the noise PS was

assumed to be white and was computed from the input image. The PS of the convolution kernel F was

assumed to be noiseless, which is only approximately correct since the raytrace which produced this

function used a finite number of rays. A low pass filter (4 pixel sigma) was applied in the frequency

domain. The results are shown in Figure 5. The technique restores a point image with a full width half

maximum (FWHM) of 0.24 arcsec. However there JS a significant amount of "ringing" in the image,

which appears as ripples in the zero level. This is often the case with this type of deconvolution

technique and arises because of the sharp digital filter and the lack of a constraint requiring the

restoration of positive counts only.
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The R-L image deconvolution requires that the restored data be non-negative everywhere. Furthermore

it insists on statistical agreement between the observed data and the rectified estimate, instead of exact

agreement and employs g 2 as the figure of merit. One well-known shortcoming of this approach is the

lack of a built-in stopping rule. We found that during the first 10 or so iterations the change in X2 was

rapid, while after about 50 standard iterations the change in g 2 from iteration to iteration became very

small. During the test period, we used this to indicate convergence. Figure 6 shows the restored image

from this technique after 8 accelerated (equivalent to - 50 standard) iterations. The FWHM of the

imaged point source is 0.21 arcsec.

5. MIRROR GRAVITY OVALIZATION CORRECTION AND RESULTS

All indications were that we had a correct hypothesis for the source of the image distortions. EKC had

determined that a force could be applied to the mirror support rings which would correct the majority of

the ovalization and related distortion. The data and a correction plan were presented to appropriate

project management personnel on Monday, Sept. 9. Approval was given to implement the correction,

and repressurization was begun as soon as the necessary hardware had been fabricated by EKC. After

the required 3 days of stabilzation, realignment of the optics began on Sept. 15. Two days later, on

Sept. 17, the first 19 x 19 scan after the lg correction had been applied was performed. The results are

plotted in Figure 7, showing a much improved PRF. Later that same day we measured the FWHM with

1D scans using the 5_tm pinhole to be 0.22 arcsec, the figure reported to the Congress and announced

publicly.

The corresponding OSAC raytrace model PSF of the new facitity effects is shown in Figure 8. Using

the same R-L deconvolution technique, we obtained the deconvolved image (after 8 accelerated

iterations) shown in Figure 9.

6. DISCUSSION OF THE R-L DECONVOLUTION RESULTS

It was noted during the test work, and in subsequent processing of test images, that the Richardson-Lucy

algorithm would produce continuous improvement in the estimated mirror performance for many

iterations, albeit at a decreasing rate. Although the deconvolution work during the test was used

primarily to establish correlation between the measured image and a model, it would be desirable to

develop a "stopping rule" such that an estimate of the true mirror performance (ie. removing the facilty

effects) might be made.

To investigate more completely the behavior of the restoration as a function of the number of iterations,

we employed the Accelerated R-L algorithm l'q in an IDI./PV-WAVE TM implementation available from

the ST-ECF. In our application, we saw an improvement in convergence rate of 5-8 over the standard

R-L algorithm. This allowed us to quickly "push" the restoration to the equivalent of hundreds of

standard iterations. Figure 10 shows the the FWHM plotted for both the pre- and post-correction

restorations, as well as the measured value and that produced by the Wiener filter. As noted, the

restoration continued to improve the image well beyond the measured value, although no direct

comparison can be made since the measured FWHM includes all facility effects, most significant in this

case being the source size effect. Although not evident in the restorations shown at 8 iterations, the

effects of 'over-restoring' the image can be seen in Figure 11, the restoration of scan 20057 after 32

accelerated R-L iterations. Here the data variations in the outer regions of the image are beginning to be

restored as separate "sources". This is inconsistent with our physical situation, and emphasizes the

importance of exercising caution in the use of this technique.
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7. CONCLUSIONS AND FUTURE WORK

The measurement of the VETA-1 FWHM within specification and on time was accomplished through

hard work by the test and analysis personnel of SAO, TRW, Eastman Kodak, and MSFC. The

information necessary to make the important real-time correction to the optic was derived in large part

from analysis work, especially the R-L deconvolution, performed in parallel with the test. We believe

this method of application, where certain known ofr modeled effects are deconvolved from measured

data to produce a more useful representation of the system performance, is applicable to many

measurement problems.

More work is necessary in the development of a R-L "stopping rule" for this application. We intend to

pursue investigations of image frequency content and the statistics related to the knowledge of the

model PSF as possible avenues for the development of such a rule. This work will be an important part

of providing definition for the test of the I-IRMA.
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ABSTRACT

We employ the X-ray measurements of the VETA-I taken at the X-Ray Calibration Facility (XRCF)
of the Marshall Space Flight Center (MSFC) to extract information about the surface finish quality of the

outermost pair of AXAF mirrors. The particular measurements we consider are one dimensional scans of the

core of the point response function (PRF) (full width half maximum [FWHM] scans), the encircled energy

as a function of radius, and one dimensional scans of the wings of the PRF. We discuss briefly our raytrace

model which incorporates the numerous effects present ill the VETA-I test, such as the finite source distance,

the size and shape of the X-ray source, the residual gravitational distortions of the optic, the despace of the

VETA-I, and particulate contamination. We show how the data constrain the amplitude of mirror surface

deviations for spatial frequencies greater than about 0.1 mm -1. Constraints on the average amplitude of
circumferential slope errors are derived as well.

1. INTRODUCTION

One of the principal goals of the Advanced X-ray Astrophysics Facility (AXAF) is to perform sensitive,

high spatial resolution imaging over a broad X-ray bandwidth. This capability is provided ill large part by

the High Resolution Mirror Assembly (HRMA), which consists of a set of nested Wolter Type-I mirrors. In

the summer of 1991, the Verification Engineering Test Article (VETA-I), consisting of the outermost pair of

ttRMA shells (P1/H1) assembled into a mounting fixture, was delivered to the XRCF for X-ray testing. The

main purpose of tile test was to demonstrate FWHM imaging performance of better than 0.5" for the optic.

An additional secondary goal was verification of tile optical surface metrology. Since schedule pressures made

it impossible to obtain complete final metrology of the polished surfaces, it was decided to use tile X-ray
data itself to estimate the surface finish quality of P1/HI.

We consider three types of data in this paper: (1) one-dimensional scans of the core of the PRF at the

single X-ray energy of 1.488 keV; (2) encircled energy as a function of radius for three X-ray energies: 0.277,

1.488, and 2.067 keV; and (3) one dimensional large angle scans of the wings of the PRF for five X-ray test

energies: 0.277, 0.932, 1.488, 2.067, and 2.334 keV. As we show below, the first data set is most constraining
of the circumferential slope errors on the surface. The second data set is most sensitive to the power spectral

density (PSD) of surface irregularities over spatiaI frequencies of f = 0.05 - 24 mm -1. The last data set

is sensitive to the amount of particulate contamination on the surface in addition to the PSD of surface

irregularities over f = 1 - 100 mm -1.

The shape of the VETA-I PRF ill the core within a radius of about 100 p _ 2" (we assume a focal

plane scale of 0.02"/p throughout this paper) was determined largely by the test conditions. For example,

the optics were not cut to their nominal flight lengths, which meant that it was impossible to space them

properly. The optical elelnents were separated by a despace of 109.03 mnl in addition to the nominal design

spacing. The finite source distance also degraded the imaging performance in the core. In order to faithfully

reproduce these and other effects in the FWHM scans and encircled energy data, it was required that a

raytrace calculation be performed. On the other hand the data taken far from the core, such as the wing

scan data, could be handled analytically.



2. RAYTRACE MODEL

OurcalculationfortheX-rayperformanceoftileVETA-Iconsistsoftwoparts:(1)theraytraceprogram
OSAC(OpticalSurfaceAnalysisCode) written by P. Glenn, and (2) a stand-alone post-processing program
developed at SAO.

OSAC incorporates tile mirror surface prescription (including low order error terms, such as axial sag)

and various VETA-I ground calibration effects: the finite source distance (518160 ram, measured from the

front of the VETA-I), the despace, and gravitational distortions. The latter were implemented in OSAC as

a set of Fourier-Legendre coefficients which were determined from fits to NASTRAN finite element analysis

models of the VETA-I in tile test, configuration.

SAO's post processing software was able to include the measured intensity distribution of the XRCF

X-ray source, 1 obscuration due to the aperture support struts, an arbitrary axial focus location, and circular

pinholes of arbitrary size placed at arbitrary positions in the focal plane. Scattering of X-rays due to

particulate contamination on the surface is also included. 2

Various mirror fabrication errors: AAR, circumferential slope, and axial slope errors, were implemented
in the post processing software. Values for the first error term were obtained from the mirror manufacturer,

Hughes Danbury Optical Systems (tIDOS) (P. Reid, private communication). The VETA-I test data were

not very sensitive to this error term. The magnitude of circumferential slope errors was parameterized as

a (one-dimensional) normally distributed quantity, and the direction of scatter was taken to be orthogonal
to the axial slope direction. Our results show that the FWHM data scans were somewhat sensitive to the

magnitude of this error. Axial slope errors were parameterized in terms of the PSD of the surface. Most

of the results we quote in this paper are based on the assumption of a PSD which varies as a power-law

in spatial frequency f, i.e., 2HI(f) = Cf -p. We allow the amplitude C and power-law index p to be free

parameters. By convention, the amplitude of the PSD is represented in terms of the band-width limited

integral for the total surface roughness

a2 = 2 Wa (f)df.
1

We quote results for the roughness per surface using limits of 1 mm -I and 1000 mm -1.

3. FWHM

The data corresponding to tile full-width-llalf-maximum (FWHM) of the PRF of the VETA-I are shown

in Fig. 1. This intensity distribution was made by stepping a 5 p diameter circular pinhole in 2 p steps

through the core of the PRF, after an initial sequence of procedures demonstrated a relative tilt alignment
between the optical elements of less than 0.1" and the location of the axial focus position to better than 25 p.

The data were taken with an aluminum anode target which produced characteristic Ka line emission at an

(emission-weighted) energy of 1A88 keV. We extracted the total number of counts from a restricted range of

pulse height (PH) channels of the observed proportional counter spectrum. No corrections for background,

deadtime, or pulse pileup were applied since the relative correction from point to point was less than a few

percent for these effects.

We present a study of the VETA-I FWHM using our raytrace model with the goal of identifying the

dominant contributors to the FWHM performance of the VETA-I, whether test-induced (such as the finite

source distance) or intrinsic to the mirror surface itself. Table 1 shows predicted FWHM values for several
raytrace models where various mirror performance errors are introduced each in turn. In all cases the

calculations are based on 5 × 10 "_rays of which about 1000 pass through the central pinhole, which ensures

statistical precision of about 5% in the modelled FWHM values.

.P
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Table 1

Predicted VETA-I FWHM

Y-FWHM Z-FWHM

(arcsec) (arcsec)
Measured Value 0.219 =t=0.030 0.221 :t=0.030

1. Grav., Finite Conj., Despace

2. Gray., Finite Conj., Despace, Source size

3. Case 2 plus Lev II Req axial slope errors

4. Case 2 plus Lev II Goal axial slope errors

5. Case 2 plus AAR errors

6. Case 2 plus circum, slope errors

7. Case 2 plus axial sag

0.132 0.140

0.203 0.203

0.208 0.206

0.209 0.210

0.201 0.206

0.326 0.336

0.202 0.202



The first two models include no mirror degradation, and instead include only the so-called facility effects:

the calculated residual gravitational distortionof the mirror, the finite source distance (finite conjugate), the

mirror despace, and the finite source size. This last effect was included by inputting the actual measured
intensity distribution of the XRCF X-ray source 1 to the raytrace model. Comparison of the predicted values

in these two cases reveals that the finite size of the source is the dominant facility induced effect to the
FWHM.

The remaining five cases show how the FWHM increases (or not) when various mirror performance

error terms are included. Cases 3 and 4 include the axial slope errors which correspond to the Level II

requirement and goal on HRMA performance as established by the AXAF project. Case 5 includes AAR

errors as discussed above. Case 6 includes circumferential slope errors with values, determined by HDOS

metrology, of 6.446 prad (on P1 after the sixth polishing cycle) and 9.745 _ rad (on H1 after the fifth

polishing cycle). The filial case includes the maximal sag error (value plus quoted error), as known at the

time of the test, 1585 ./t (P1) and 447/_ (H1). Clearly tile dominant mirror effect is the circumferential slope

errors, for which metrology of the current optical surfaces (after 7 cycles of polishing) does not yet exist•

Given the large disparity between tile predictions of tile current raytrace model and the actual FWHM

data, we thought that all attempt to determine a set of model parameters which better describe the data

was warranted. The strong dependence of the FWHM on the circumferential slope errors, plus the fact

of outdated metrology for this error term, suggested that a prudent and reasonable analysis would be to

determine the average (i.e., tile root-sum-square [RMS] of errors on P1 and HI) circumferential slope error
which best fit the data. We did not carry out a fit in the formal sense to the FWHM scan data, but rather
searched for that value with gave nearly the same FWHM as measured. Table 2 summarizes the cases run.

Note that the slope errors in the table are given as the RSS of P1 and H1. In contrast to the sensitivity

study done above, these cases include axial slope errors (Level II requirement), AAR errors, sag, as well as

tile facility effects. The best fit corresponds to an average slope error of 3.0 prad per surface.

ill

1,

Table 2

Predicted FWHM for Various Circumferential Slope Errors

RSS Error Y-FWHM Z-FWHM

prad (arcsec) (arcsec)

0.0

4.27

5.80

8.63

11.68

0.209 0.208

0.223 0.223

0.234 0.238

0.285 0.276

0.326 0.321

Figure 1 shows the comparison with the entire FWHM curve for the best fit circumferential slope errors.

Note that a fit was not performed to this curve and only scaling in intensity was done. The agreement with
the Y-scan data is remarkable. Differences with the Z-scan data (particularly the intensity jumps near +50

/t _ 1") are probably a result of residual gravitational distortions due to the bonded flexure pads which

support the optics. At this time, neither the finite element mechanical model nor our raytrace model can
faithfully reproduce such high frequency distortions in the optic.

4. WING SCAN

The wing scan data were originally intended to allow estimation of tile amount of X-ray flux scattered

beyond the largest diameter (20 mm) pinhole available in the VETA-I test and to provide a (hopefully small)
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correction to extrapolate to the effective area integrated over the whole focal plane. 3 The test procedures

called for stepping various size pinholes (from 3 mm diameter to 20 mm diameter) out to large offset angles

from the beam center for various X-ray test energies. This data set has proved useful in characterizing the

surface roughness of tile optic as well as indicatiug the presence of surface particulate contamination.

Our approach was to assume that the observed surface brightness at large angles was a result of scattering

from surface roughness. In this picture an in-surface spatial wavelength 1/f diffracts (or scatters) light of a
given wavelength ,k through an angle 0 according to the the grating equation

0 sin c_
f-

with a as the mean grazing angle of the surface (here we use 51.2'). It is possible to relate 4 the surface

brightness ¢(0) (at 0 normalized to the total power in the focal plane) to the PSD of surface irregularities
Wl(f) through

/¢(0)_ 4
2Wx(f) = 8r(sin a)4"

The wing scan data were background subtracted and corrected for possible temporal variations in

source intensity by dividing by the counting rate in the normalization detector. We used the wing scan data

themselves to estimate the total flux for normalizing ¢(0). We assumed azimuthal symmetry (which was an

excellent approximation based on a comparison of data taken in the orthogonal Y- and Z-directions) and

integrated the flux from tile 3 mm diameter pinhole scan out to a radius of 2.036 milliradians (21 mm).
This was the only set of data which was available for nearly all the test energies and so this technique was

used for consistency. Tile ¢ values also had corrections applied to compensate for the fact that we were

sampling a steeply falling surface brightness distribution with a circular pinhole of finite size. In no case was

a correction larger than ,,_10% required. Figure 2 shows the wing scan data plotted in this representation.

Clearly the data in Fig. 2 are inconsistent with our main assumption, i.e., that all the scattering is due
to surface roughness, since there is an apparent dependence of roughness with wavelength. For example, the

inferred surface roughness from the carbon data alone (,_= 44 ._) is 40/_ per surface, while it is 11 /_ per

surface from the molybdenum data (,_ = 5.3/_). This (in addition to other evidence 2) suggests the presence

of particulate contamination on the mirrors. A simple three parameter model of scattering from dust on

the surface has been developed 2, combined with the surface scattering model, and fit to the data to yield

the individual solid curves shown in Fig. 2 for each energy. We used a least-square minimization on the

logarithmic data in lieu of a standard ._2 minimization using purely statistical errors. The fitted parameters

of the dust model are consistent with other measurements of the surface contamination. _ In Fig. 2 the dashed

curve shows the best-fit model for the surface PSD; the numerical values of this fit are a = 7.3 + 0.6/_ (per

surface) and p = 1.22 + 0.13 (90% confidence errors for a single parameter).

Figure 4 shows two-dimensional contours for theamplitude and index of the power-law PSD from fits to

the wing scan data (the dashed set of contours on the right side). The errors on the data used to produce this

figure were estimated from the root-sum-square of the logarithmic residuals from the best-fit model (shown
in the bottom panel of Fig. 2).

5. ENCIRCLED ENERGY

The encircled energy data were processed in detail to remove numerous test effects. These included

background subtraction, pulse pileup, and deadtime, as well as corrections to remove the known spectral

impurity of the incident X-ray spectrum, due mainly to continuum emission from electron bremsstrahlung
in the X-ray target) Additional data reduction was implemented to remove the effects of the wire mesh
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Figure 2 - Large angle scattering (wing scan) data from the five X-ray test energies scaled and
plotted interms of the PSD (2W1) of surface irregularities vs. spatial frequency f. The dashed

curve indicates what would be expected if only scattering from a rough surface were involved. The
evident differences between the several test energies strongly indicate the presence of particulate

contamination on the surface. The individual solid curves show the best-fit model for scattering
from both surface roughness and particulate contamination for the various test energies. The lower
panel shows the logarithmic residuals between the data and best-fit model.

supporting the thin polypropylene window of the low energy proportional counters used in the test. 6 These
processing steps allowed us to reduce the average fractional error on our encircled energy data from 3.8% to
0.9%.
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Figure 3 - Encircled energy data, for three X-ray test energies. The panels on the left show the
data and the best-fit raytrace model; the panels on the right show the residuals.

Figure 3 presents the encircled energy data at three test energies (labelled by the material composition
of the anode target) for which it was possible to carry out the complete processing steps outlined above. The
data are given in effective area units by referencing the number of X-ray events observed through each pinhole

by the focal plane proportional counter to the corresponding numer of counts observed in the (nominally
identical) normalization proportional counter positioned at the entrance aperture of the VETA-I.

We compare the encircled energy data at three X-ray test energies with our raytrace model. Note that
the results in this section include the updated value for the circumferential slope errors of 3.0 #tad per
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surface from the FWHM analysis presented in §3. We also incorporate the best-fit dust scattering model

from the wing scan fits discussed in §4. The effect of dust scattering on the EE data is weak: from the

smallest pinhole considered (0.3 mm diameter) to the largest (20 mm diameter) there is only a 2% difference

in the encircled energy due to scattering from particulate contamination.

Some comments about, how the model and data were normalized are needed. At the present time we are

not able to accurately estimate the amount of X-ray flux scatteredby the mirror beyond the largest pinhole

Used-in"these 111easuremeilts and-rims We do not know the-total power (or transmitted energy) in'the focal

plane. As mentioned above, the data are given in effective area units, while the raytrace produces encircled

energy models with values between zero and unity. In our model comparisons we scale the model to the
data by determining the multiplicative normalization factor which minimizes X 2. This is done separately for

the data at each X-ray energy. The multiplicative factor is the total effective area (integrated over the focal

plane) at that energy.

In order to fit for the parameters of the power-law PSD we generated a large grid of model encircled

energy distributions over a range of amplitudes and power-law indices. For each amplitude-index pair,

three raytraces were run corresponding to each of the three X-ray test energies. At each point in this two-

dimensional parameter space the data and models were compared (for each test energy separately) and a
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_+2._ ._, andtotal X 2 value for that point was determined. The best fit from these data occurred for ¢ = .... 1.4

1 06 +°'15 with a grand combined X 2 13.2 for 28 d.o.f. The smooth curves shown in the left panelsP -- • -0.20 ---
of Fig. 3 correspond to this best fit and the residuals are in the right panels. The fit for each of the test
energies is good, as indicated by the individual X_ values labelling the panels.

The two-dimensional _2 contours for fits to the encircled energy data are shown in Fig. 4 as the solid

contours toward the left. side. These are consistent, even at the 68% confidence level, with the wing scan
data results.

6. CONCLUSIONS

We have used X-ray measurements of the VETA-I to estimate the surface finish quality of the largest

pair of AXAF mirror elements. We find that the narrow FWHM of the PRF requires that the circumferential

slope errors be approximately 3.0 prad per surface. Both the wing scan and encircled energy data can be

well fit by a PSD for the surface roughness which falls as a power-law in spatial frequency with index 1.2

and amplitude cr _, 7.5 ,_. The wing scan data also reveal evidence for a significant level of particulate
contamination on the VETA-I mirror.

The X-ray data are unable to make strong statements about the actual detailed functional dependence
of the surface PSD on spatial frequency. For example the data allow the inclusion of a mid-spatial frequency

term (with a correlation length of 18 ram) at a level of about 20 _, as shown in the top left panel of Fig. 5. An

entirely different parameterization of the surface PSD (based on the set of terms used to derive specifications

on HRMA performance), also provides an acceptable fit to the X-ray data (see the top right panel of Fig.

5). The lower panel of the same figure shows the range of pure power-law PSD models allowed by the

encircled energy data and the wing scan data. Although it is not possible to exclude a single power-law

model as a description of the data, there may be some indication of a steepening of the PSD with increasing

spatial frequency. We look forward to the final optical metrology data of the VETA-I, which will allow us

to investigate these and other models characterizing the surface finish quality of the VETA-I.

This research was supported in part by NASA contract NAS8-36123.
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ABSTRACT sphere of solid angle behind the optics. For observations with
The x-ray reflectivity of the VETA-I optic, the outermost the AXAF observatory, one could consider whether this is

shell of the AXAF x-ray telescope, with a bare Zerodur sur- really a useful quantity. It is of interest when comparing total
face, is measured and compared with theoretical predictions, reflected power with that predicted from scattering theory, but
Measurements made at energies of 0.28.0.9. 1.5, 2.1, and 2.3 the scattering theory uses scattering coefficients obtained from
keV are compared with predictions based on ray trace calcuia- experiments that are difficult to do precisely. Experimental
tions. The data were obtained at the x-ray calibration facility measurements of reflection are very difficult to do out to scat-
at Marshall Space Flight Center with an electron impact x-ray
source located 528 m from the grazing incidence mirror. The
source used photoelectric absorption filters to eliminate
bremsstrahhng continuum. The mirror has a diameter of 1.2 m
and a focal length of 10 m. The incident and reflected x-ray
flux are detected using two proportienal counters, one located
in the incident beam of x-rays at the enhance aperture of the
VErA-I, and the other in the focal plane behind an apertureof
variable size. Results on the variation of the reflectivity With-
energy as well as the absolute value of the reflectivity are pre-
sented. We also present a synchrotron reflectivity measure-
ment with high energy resolution over the range 0.26 to 1.8
keV on a flat 7_erodursample, done at NSLS. We present evi-
dence for contamination of the fiat by a thin layer of carbon on
the surface, and the possibility of alteration of the surface
composition of the VETA-I mirror perhaps by the polishing
technique. The overall agreement between the measured and
calculated effective area of VErA-I is between 2.6% _a¢i
10%. depending on which model for the surface composition
is adopted. Measurements at individual energies deviate from
the best-fitting calculation to 0.3 to 0.8%, averaging 0.6% at
energies below the high energy cutoff of the mirror reflectiv-
ity, and are as high as 20.7% at the cutoff. We also discuss the
approach to the final preflight calibration of the full AXAF
flight mirror.

1. INTRODUCTION

In the following sections we discuss the techniques we
used for the measurement of VETA-I effective area. We also
discuss the techniques used for calculation of the predicted
effective area from previously existing knowledge of the com-
position of the reflecting surface material, atomic scattering
coefficients, and the geometry of the mirrors. We present a
summary of the raytrace calculation gocedttte, aad give the
results of the comparison, compared with the data. We also
present the results of the synchrotron reflectivity measurement
for comparison.

The total effective area is defined in this work as the inte-
gral of the point response function (PRF) over the back henri-

tering angles of rd2 because the flux density is so low at large
angles, and the geometry of the optics prevents rays scattered
at angles larger than about one degree from reaching the focal
plane. Other measurements, such as total absorption, are also
difficult. In this paper, we report estimates of the total effec-
tive area to hi2 based on extrapolation of measurements taken
out to angles up to 17.5 ammln, at which point the flux density

is less than 10"t° of its peak central value.

2.MEASUREMENT TECHNIQUE

The generalaspectsoftheVErA-I testaredescribedby

Kelloggetal_.The measurementtechniqueusesphotometric

x-ray detectors2 with a series of cit_dar mechanical apertu_r_
of increasing diameter centered on the peak of the PRF to
define the geometricflux collectingarea. The size of each
apertme corresponds to an angle from the center of the point
response function, out to which all flux is integrated. The larg-
est aperture used was 20 mm diameter, which corresponds to
3.3 arc,rain radius. At larger angles, the aperture was moved
off-center from the PRF peak to measure the flux outside the
maximum centered angle. These were known as wing scans.

The x-ray source is described in Chartas et al2 and Zhao

et al3. The targets used and resulting characteristic line ener-
gies are given in Tablei. The dominant line is al in Siegbabn

notation which corresponds to either the transition KL [] or

LmMv.

The technique of Chartas et al2 is used to defll_ the x-ray
energy. The contribution to the reflected flux from the
VErA-I opticdue to continuumfromthex-raysourceissub-
tracted, using a model of the mirror reflectivity vs. energy.
What remaim after the mbgaction is the contribution from the
characteristic line(s).

The apertures used are nominallycircularwith diameters
rangingfrom0.005to20 ram.The actualsizesand shapes
deviate from ideal cirdes,so this effect must be taken into
ac_xmt. The details of these size and shape measurements are

10/16/92 SPIE 1742-14 Kelloggetal, pg 1 of 8



describedbyPodgorskiet a14. 2nn/2

Table 1: X-ray targets and Energies Wing (01) = f f KO-_sinOdOdtk
0 o_

Dominant
Mean Line _/2

Element Z Shell Line
Enetgy. keV = 2nK f 0-_sin0d0 •Energy, keV

o

0t
C 6 K 0.277 0.277

In Figure 1, we show the PRF of the VETA-I mirror atCu 29 L 0.9297 0.932
A.I-K, 1.49 keV. The data at angles from 4.7 x 106 to 9 x 10-4

A1 13 K 1.4867 1.488

Zr 40 L 2.04236 2.067

Mo 42 L 2.29316 2.334 10 ta...... _ ! I I1_1 I I I I I Ill ! I I I III I I I I I 1_
m

\

A number of runs were carded out with the same x-ray 10 tl = ',
target at different electron currents in order to determine the

sensitivity of the results to the intensity of the X-ray beam. The 1OtO \ _
error from such an effect was found to be much smaller than --= \

other errors.

Absolute normalization of the effective area was deter- 10 9 _--

mined by taking the ratio of the flux in the x-ray line in the
XDA detector to the flux in the x-ray line in the BND detector 10 • =-- _ \

and multiplying by the open area of the BND detector, a 20 \
mm diameter aperture whose area was measured to be 100n = 10 v

"7 ==
314.16 + 0.08 mm2 (+ 0.025%), 4. That error is negligible in _

comparisonwithothers,andsois ignored in the error analysis. =_ 10. -_ _x_ ,-

3. CALCULATION OF TOTAL REFLECTED o lO a

We definetheeffective area as the integralofthePRF "_ 10 '_=
with the energy spectrum of the x-ray source, and the integral
over angles with respect to the incident beam direction 0 < 0 < 10 a
n/2 and 0 < _ < 2n, polar and azimuthal angles, respectively. -=
In this paper, we assume the PRF not to be a function of _. We
also assume that the PRF is composed of two ftmctions of 0, a 10 a _

cI

o

core fc (0) and a wing. We fred that to a sufficient approxi- 10 i o
__= D

mations. the wing has a power law distribution o _ =:_%o
I_ E o

f_ (0) = K0 -'_. The functional form of the PRF at large 1 _ _ o o
o

angles is obtained from a fit to the wing scan data. such as
from Figure 1. Therefore, the integral of the PRF, or the Eft- 10 -t ................................
ective Area out to rd2 is - 10 -6 10 -a 10 -4 10-s 10 -a

EffectiveArea., Core (0:) + Wing (01) Polar angle, O, radians ,r

O_ n/2

="fro(o) Od_+ f (KO-=)d_ where 01 is the angle at Figure I. PRFofVETA-I at 1.49 keV.Theopen circles arethe
measuredPRF, with 1 crerrorbars. The open squares aretheo 0]
deviationsof the PRF from thepower law fit to the wings of the

which the contribution of the wing to the PRF is very small PRI_which is the line of constantslope. The dashed line is the
compared with the core and 02 is the angle at which thecontri- core PRF with the wing tit subtracted.

bution of the core is very small compared to the wing. rad were taken using annular apertures consisting of an open
The wing is them annulus of a circle cut in solid metal, with four spokes to sup-

port the central opaque circle. The anmdus has an inner diam-
eter 0.9 of its outer diameter. The spokes obscure 10% of the

i
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annulus at angles of 45° with the horizontal and vertical axes.

At larger angles out to 5.2 x 10.3 rad, circular pinhole apertures

offset from the center of the PRF were used. In Figure 1 a
power iaw fit to the data at large angles is shown. The slope of
the function with 0 is given in Table 2. The equation fitted is

logPRF = -cdog0 + logb. That component was subtracted

from the PRF measured at the three smaller angles, resulting in
the steeply rising curve in Figure 1 at small angles. The fit to
the dam was done only to the annuli data, since the pinholes
must be corrected by a factor that depends on the ratio of their
distance off axis to their size, and on the power law slope. The
pinhole points lie above tim curve, but approach it at larger
angles, as the correction becomes smaller.

Therefore. we see that

• the PRF contains an outer component that is reason-
ably well represented by a power law

• the transition to the steeper inner component occurs at
angles less than 104 rad.

As a result, it appears reasonable to use the power law to
estimate the flux contained in the portion of the PRF outside

the 20 mm pinhole (which subtends a half-angle of 9.8 x 104
rad).

The results of the wingscans at the other four energies are
shown in Figure 2. The parametersof the logarithmic fits to the
outer part of the PRF arc also listed in Table 2. The slopes in

Table 2: Power Law Fits to the Outer grmgs af tim PRF

keV

C K 0.277

Cu L 0.930

Al K 1.49

ZrL 2.06

MoL 2.29

Reduced
cx log b X2

2.381 +0.007 -1.904 +0.025 13.9

2.004 + 0.011 -0.488 + 0.034 3.2

2.028:t:0.007 -0.522:1:0.023 4.3

2.074 :l:0.046 -1.24 :l:0.16 1.4

1.643 :l:0.075 -0.578 :l:0.215 4.6

Table 2 for the three middle energies. 0.93.1.49 and 2.06 keV.
are not significantly different, but the slope at 0.277 keV is sig-
nificantly steeper, and the slope at 2229 keV appears to be flat-
ter. although it is based on only four data points. The slope is
a result of the size distribution of features in the microrough-
hess of the surface, as well as of any possible dust contamina-
tion that lies on the surface. This result suggests that some

information about the size distributions may ultimately be
obtained from the wing scans.

The large values of reduced Z2 for the power law fits may

come from a lack of azimuthal symmetry in the wings of the
PRF. or because the model chosen doesn't fit the data well
enough. For the Cu-L data. we did fits to the wing scans at four
azimuths c.orresIxmding to scans in the vertical and hmizontal
directions, and the slopes were the same within error, but the
normalizations differed by almost a factor of two. We
attempted to improve the AI fit by averaging over azimuth

before fitting, but no significant improvement resulted.

We note that the fractional power in the wings increases
with energy, as expected from scattering.

4. CHARACTERISTICS OF ZERODUR:

COMPOSITION

In order to compare the measured effective area with that
expected, we calculate the effective area from tabulated
atomic scattering factors. Such a calculation can only be doae
if the composition of the reflecting surface is known. We ini-
tially assumed that the surface has the same composition as the
bulk material. The Zerodur used to construct the AXAF mix.
rots was supplied by Schott. The composition is given m

Table 3. in descending order of abundance6.

Table 3: Composition of AXAF Zerodur Mirrors

Fraction Fraction
Compound by weight Compound by weight

SiO2 0.555 ZrO 2 0.019

AI203 0.253 ZnO 0.014

P205 0.079 MgO 0.010

Li20 0.037 Na20 0.005

TiO 2 0.023 As20 3 0.005

5. RAY TRACE CALCULATIONS

The effective area of the vE'rA-I was calculated using the

OSAC raytrace code 7. It was assumed that the optical ete-
ments were perfectly aligned, the despace was 109.03 mm
andtheX-ray source was on-axis.The actualfinitesourced,_-
tame of518160mm (1730ft.)was used.The reflectivt_tf

Zer_ur was calculated using the Henke et als opticalcon-
stants for the mixture shown in Table 3 with a bulk den,,b

valugof2.53 g can3.

There are stops along the optic axis defining the axial
extent of the reflecting surfaces. The stops are: the apodizer
located at the back of the P1. the mid-plane aperture plate, and
the apodizer located at the back of the HI. However. due to the
finite source distance and despace of the P1 and HI. only
about 60% of the nominal flight length of the P1 optic was
exposed, so the mechanical stops were not significant.

Tim figure of each optic was assumed to be a perfect conic
secdon with the as-desigugd conic parameters. The large scale
figure errors, either dug to fabrication or to gravitational or
thermal distortions, do not have any significant effect on cal-
cuih_don_of total reflectivity in 2n ster.since thoy only redis-

tributepower in the coreof the PRF. Small scale microrough-
hess and dust on the surface can have a significant effect, how-
ever.

Because of the assumptions of perfect alignmem, an on-
axis source positinn, and no distortion, and because we did not

10/16/92 SPIE 1742-14 Kellogget al.pg 3 of 8



7

X}

O

10 7

I0 e

10 5

10 4

1000

I00

10

I

0.1

1012

1011

10 lo

? 10 g

• i0 a
ta ?._ 10 .
E I0 e°
0 !

g 105.!
I0' __.

,,-, 1000 _!
I00 _,

10 !

I,

Zirconium L, 2.04 keV
I i I I I t I i

/

a

= o R
a

o o
0

1 I I I I::] I li::l

rl

n
o

0

I

10 e

0.0001

10 _

=1 III1

II
: %

b

-,,,, x

. I -I IIIII

10-5

Polar angle, 8, radians

i 7 10 4
I-,

_ 1000

:_ 100
- "el

',., 10
"0

1 .:-

0.i
0.00010.001

Polar angle, 8, radians

Carbon K, 0.28 keY
I I I IIIII I I I IIIII I ,:1

=

II

.u
,. _ "_

.

!

. I eft = .
i,,-

o u l :

1 l IIIIII 1 I IIItll I "1 I"_l 1
%,lej,.

0.0001 0.001 0.0001

Molybdenum L, 2.29 keY
I I I I I I I I I I I _

I]

1 I l | I i II

0.001

I I I

10 7

10 a

7 10s
t.
@
,_ 10 4
_ -=

N

_1000 ._

i00 __.

10 =

Polar angle, 8, radians

Copper L, 0.93 key

I I I I I I II I I I I I Ill !

%=_

--.,,.. :
-,,,.,___--

0 n 0
- o o -'-

0 0 0 0

0 0 0 0

I I [ 1 Ill I I i _l III

0.001 0.01

Polar angle, 0, radians

J
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do a detailed model of the azimuthal dependence of the obscu-
radon by the support struts, the raytrace had rotational symme-
try about the optical axis. Consequently it was possible to
reduce the integration over the entrance pupil of the telescope
to a one dimensional radial integration. This was implemented
by placing 2000 rays at a single angular position over an annu-
lar entrance pupil The emergingrays were collected in a ray
file, which was then fdteIed at the focal plane to determine
which ones passed through a specified pinhole aperture, to
determine the fraction that were transmitted.

We quote the total effective area over 2n ster, that is, inte-
grated over the entire focal plane. Obscuratim due to the four
mirror support struts (which were 76.2 mm thick) reduced the
calculated area by 8%. The results showed some dependence
of the flux in the wings on azimuth which may be due to the
struts.

6. ATOMIC SCATrERING FACTORS

The x-ray reflection coefficients were calculated using the

most recent Henk¢ et al atomic scattering factorss. which are
obtained by fitting a large quantity of experimental data. The
factors are given as values of f I and f2 from 10to 30000eV in

logarithmic inmrvals, and represent tim best available basis for
comparison with previous measurements. Expressions for
reflection from scattering coefficients am given in the original

I-Ienlm et al9 paper.

7. RESULTS

Figure 3 shows the effective area of the VETA-I, calcu-

_o

z@

inn.

50,

O'

, + .... J .... + .... i .... * .... i •
o o+J I Li 2 23

.E,m'lr,keV

Figure 3. Calculated effective area of VETA-Ifor four different
compositions. The labels indicate thefractionalcomposition of
SiO2. The nominal composition for Zerodur is 0.555.

lated using the methods des,Tibed above, for several variations
on the composition of the glass. These results were then com-
pared with the measured effective area to see which composi-
tion would give the best fit to the measurements. The s_
in the calculated curve due to edges of oxygen (532 eV). alu-
miriam (1560 eV) and silicon (1840 eV), which are the main

constituents of Zeredur, is readily apparent.

The comparison between calculated and measured effec-
tive areais shown in Figure 4. The calculated curves were nor-

maiized to the measured points by minimizing X2. The calcu-

lated areawas multiplied by 0.974 for the pure SiO2, and 1.10

for Zerodur to obtain the minimum X2. Thus, there is a slight

preference for the surface composition of the glass being pure

SiO2, rather than Zerodur, based on the better X2 (20 for 4
d.o.f, vs. 51 for Zerodur) and normalization.

250

2OO

150

c._ 100

50

Energy, keY
Figure4. Calculated andmeasuredeffective area of VETA-I. The
-crossesare the measuredresults, giving theupperandlower limits
of the estimated lo errors. In addition to the totaleffective area,
the area outsidethe 20 mm pinhole,or 1 mrad angle, is plotted,
which shows that the wings of the PRFare more important at
higher energy.

A similar plot of the calculated effective area compared
with the measured data is shown in Figure 5, for tim case of
Zerodur with a range of thicknesses of carbon from 0 to 80 A.
The measured effective area at 0.277 keV agrees best with the
curve for no carbon layer.

8. SYNCHROTRON REFLECTIVITY

MEASUREMENTS

The x-ray reaqectivity of a flat polished sample (PI-I) of
the VETA-I P1 paraboloid section material was measured at

the NSLS, using techniques described by Graessle et aim. Fig-
me 6 shows the results, compared with a calculation based on

the Henk¢ tables s. Obvious absorption features are present
from carbon (284 eV), oxygen (532 eV), and aluminum (1560
eV). IncidentaLly, it is not surprising that the oxygen feature is
much deeper than the Henke prediction; the latter are based on
sparse data near edges. It should be noted that Figure 6 gives
the reflectivity for single reflections from a f/at minor,
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Figur¢ 6. Rcflcctivityof PI-1 Zerodursample
tim, at an incidentangle of 51.2 arc_.

whereas the results in Figure 3, Figure 4 and Figure 5 arc for
double reflections from the VETA-I optic; while the same fea-
tures are expected in both cases, their depth and gross energy
dependences will differ.

There is a striking indication of the presenceof carbon on
the surface of the flat P1-1 sample, seen as the inccasc of
reflecdvity at energy below 284 eV. and the decrease above
that energy, compared to the prediction for bare Zerodut.

9. DISCUSSION ..........

9A. Carbon contamination

The raytrace catculations for both Zerodur and pure SiO2

are in good agreement with the measured effective area at 277
eV. We cannot yet make a statement with much certainty about
the existence of hydrocarbon on the VETA-I, since the calcu-
lations we have done so far (see Figure 5) were only done with
a mean grazing angle approximation, not a full raytracc. Also,
It would be much better to have reflectivity measurements at
energies just above and below the carbon edge to make the
result less ambiguous.

For the fiat, them is prima facie evidence fox a carbon
film. Therefore we conclude that the fiat measured at the syn-
chrotron was contaminated by carbon, and the VETA-I opdc
was probably not.

It is not surprising that the Surface of __otron test
fiat was contaminated by carbon, since no special prevention ,T
measures were taken. The VETA-I optic was. however, ple- ;
pared under somewhat more stringent conditions, so it is again
not surprising that the VETA-I shows no obvious contamina-
tion from acarb<mfilm.

Carbon contamination will be important for AXAF oper-
ation in orbit, because sucha fdm couldbe depositedatany
time. If it happens before the final metal coating, it may inter-
fore with proper adhesion at the least. If it happens after metal
coating,theenergy dependence of the PRF willbe affectedat
the 5 - 10% level, much greater than our goal of 1-2% for
knowledge of the PRF.

9.2. Poss!bi[ityof changes in surface composition due
to podsnmg

The formal X2analysis supports the notion of a pure SiO 2

surface, although we recognize that themaredifficulties with
interpreting the data, especially in estimating the total power
outside the 20 mm diameter apertures. There is room for a
more sophisticated analysis in the future that may give a less
ambiguousinterpretation.

The bettex agreement betwee.n tim prediction for pure
SiO 2 and tim VETA-I measured reflectivity vs. energy c,oald

be due to a change of surface composition during polishing at
HDOS. causing the enhancement of SiO2. On the ocher hand,
the syac__ qtr_ _ fr_ _t show clearevidem¢ for the
Al edge at 1560 eV. so the polishing done at Marshall Space
Flight Center did not affect the composition. The present
VETA-I data and analysis at not sufficient to allow firm con-
clnsions to be drawn.

Changes in surface composition of the Ze,rodur may not be __
s_gnificant fortheAXAF flightmirrors.They wilI be coated
with a high density metal film to improve their x-ray reflecfiv-
ity. which will not be sign[ficaudy affected by the composition
of the underlying _odw.- ......=_ _ _ _ .... : _

9.3. Absolute normafizaSon ::

We have very litde informabonontheerror in our knowl-
edge of the absolute geometric area. Two _sible contributors
are centering errors and errors in placement of apodizers.

Thenorm_afionfactornecded tominimi'_z2foTttmfit -_
in Figu_',_iS 0.9-74_ ptm_SiO 2. and 1.lOfor-Zerodur. which :
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gives us an overall agreement in the product of geometric area
and reflectivity of 2.6% and 10% respectively. We would like

to believe the better agreeing number, and that this shows the
geometric errors to be negligible, but of course, even if the bet-
ter number is true, there could always be a fortuitous cancelling
of geometric errors and overall reflectivity calculation errors.
For the final flight calibration of AXAF, k will be important to
devise a way to estimate these geometric errors, and include
them in our analysis.

9.4. Implications for final AXAF preflight calibration

The valu_ of _2 for the best fit to the measured effective

area. 20 for 4 d.o.f., is still not formally acceptable, so there is
evidence for some remaining problem, which could be due to
unknown errors in the measurement process, or in the calcula-
tions.

There is a great deal of structure expected in the reflectiv-
ity curve between 1800 and 2200 eV. If we had measured
reflectivity of flats polished in the identical manner to the
VETA-I using the synchrotron over that energy range, we
probably could have resolved the compositiou issue. We may
be able to do this on a Zeredur sample when the VETA-I is dis-
assembled and cut to the proper length for the flight AXAF
optics.

In Table 4, we show the deviations between the measured

values of the VETA-I effective area from F'gme 4 and the best
fit calculation at each of the energies. The average value of the
deviations from the full area is 1.2%, which is one measure of

how accurately we have done the measurement. Another mea-
sure is the normalization factor,which givesus an overall

agreement in the product of geometric area and reflecfivity of
2.6% for our best fit composition of pure SiO2. Therefore, we

might surmise that in orbital operation (assuming we make no
improvement in our measuring techniques prior to the final
flight calibration planned for 1995-96), AXAF could make
measurements of absolute flux over a broad spectral band to
~ 1%, but in a pessimistic view, might be in error as much as
10% of the geometric area overall. At higher energies, where
the refiectivity cuts off and the effective area is much smaller,
the errors could be larger, as high as - 20%, as shown in the
fourth column of Table 4.

Carefulanalysis of the calibration data and comparison
with complete synchrotron reflectivity energy scans taken on
faithful witness flats may reduce the errors at selected energies
by allowing us to weight the individual measurements appro-
priately. For the final calibration, we are also planning to use

Table 4: E£fective Area Deviation vs. Energy

Energy Line
keV

0.277 C-K

Deviation from Measured Value to

Best Fit,

normalized to
normalized to full

area at each
area at 0.277 keV

energy

0.3% 0.3%

Energy
keV

0.93

1.49

2.09

2.29

Table 4: Effective Area Deviation vs. Energy

Deviation from Measured Value to

Best Fit,

normalizedto
normaLized to furl

area ateach
areaat0.277keV

energy

0.7% 0.8%

0.6% 0.7%

Line

Cu-L

AI-K

Zr-L

Mo-L

2.5% 20.7%

0.6% 8%

detectors with considerably better energy resolution, eliminat-
ing errors due to contamination from continuum in the spec-
trum of the x-ray beam used at the calibration facility, The sin-

gle worst disagreeing measured data point was at 2.09 keV,
Zr-L. We know that this measurement suffered from by far the

highest contamination by bremsstrahlung continuum, about
33%, compa_,d to values as low as about 8% at other energies.

We also plan to characterize the nature of the x-ray
beam's spectrum much more carefully using high resolution
spectrometers. We believe all three of these improvements are
necessary to achieve the desired accuracy of effective areacal-

ibration,even up to the high energy cutoff of the mirror.
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